
Logical Methods in Computer Science
Volume 20, Issue 1, 2024, pp. 13:1–13:43
https://lmcs.episciences.org/

Submitted Mar. 03, 2023
Published Feb. 12, 2024

GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME

DYLAN MCDERMOTT a AND ALAN MYCROFT b

aReykjavik University, Iceland
e-mail address: dylan@dylanm.org

bUniversity of Cambridge, UK
e-mail address: Alan.Mycroft@cl.cam.ac.uk

Abstract. We establish a general framework for reasoning about the relationship between
call-by-value and call-by-name.

In languages with computational effects, call-by-value and call-by-name executions of
programs often have different, but related, observable behaviours. For example, if a program
might diverge but otherwise has no effects, then whenever it terminates under call-by-value,
it terminates with the same result under call-by-name. We propose a technique for stating
and proving properties like these. The key ingredient is Levy’s call-by-push-value calculus,
which we use as a framework for reasoning about evaluation orders. We show that the
call-by-value and call-by-name translations of expressions into call-by-push-value have
related observable behaviour under certain conditions on computational effects, which we
identify. We then use this fact to construct maps between the call-by-value and call-by-name
interpretations of types, and identify further properties of effects that imply these maps
form a Galois connection. These properties hold for some computational effects (such as
divergence), but not others (such as mutable state). This gives rise to a general reasoning
principle that relates call-by-value and call-by-name. We apply the reasoning principle to
example computational effects including divergence and nondeterminism.

1. Introduction

Suppose that we have a language in which terms can be statically tagged either as using
call-by-value evaluation or as using call-by-name evaluation. Each program in this language
would therefore use a mix of call-by-value and call-by-name at runtime. Given any such
program M , we can construct a new program M ′ by changing call-by-value to call-by-name
for some subterm. The question we consider in this paper is: what is the relationship
between the observable behaviour of M and the observable behaviour of M ′?

For a language with computational effects (such as divergence), changing the evaluation
order in this way will in general change the behaviour of the program, but for some effects
we can often say something about how we expect the behaviour to change:

• If there are no effects at all (in particular, programs are normalizing), the choice of
evaluation order is irrelevant: M and M ′ terminate with the same result.

Key words and phrases: computational effect, evaluation order, call-by-push-value, categorical semantics.
∗This article is an extended version of [MM22].

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(1:13)2024
© D. McDermott and A. Mycroft
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-6705-1449
https://orcid.org/0000-0001-7013-8572
http://creativecommons.org/about/licenses

13:2 D. McDermott and A. Mycroft Vol. 20:1

• If there are diverging terms (for instance, via recursion), then the behaviour may change:
a program might diverge under call-by-value and return a result under call-by-name.
However, we can say something about how the behaviour changes: if M terminates with
some result, then M ′ terminates with the same result.

• If nondeterminism is the only effect, every result of M is a possible result of M ′.

These three instances of the problem are intuitively obvious, and each can be proved
separately. We develop a general technique for proving these properties.

The idea is to use a calculus that captures both call-by-value and call-by-name, as
a setting in which we can reason about both evaluation orders (this is where M and M ′

live). The calculus we use is Levy’s call-by-push-value (CBPV) [Lev99]. Levy describes
how to translate (possibly open) expressions e into CBPV terms VLeM and N LeM, which
respectively correspond to call-by-value and call-by-name. We study the relationship between
the behaviour of VLeM and the behaviour of N LeM in a given program context.

The main obstacle is that VLeM and N LeM have different types. The former has a “call-
by-value type” F(VLτ M) and the latter a “call-by-name type” N Lτ M, defined in Section 2.1.
They hence cannot be directly compared. Our solution is inspired by Reynolds’s work
relating direct and continuation semantics of the λ-calculus [Rey74].

The first step is to define a family of (set-theoretic) relations (in the style of a logical
relation) that compares the observable behaviour of a term of call-by-value type with
observable behaviour of a term of call-by-name type. We can then ask whether VLeM is
related in this sense to N LeM. This is not the case in general. In the presence of arbitrary
computational effects, we cannot expect to say anything useful about how the behaviour of
VLeM relates to the behaviour of N LeM. However, under certain conditions satisfied only for
certain effects, VLeM is related to N LeM. These conditions say roughly that we can discard,
duplicate, and reorder effects. The main result of the first step is a theorem relating the two
translations of e when these conditions hold (Theorem 4.7). This does not quite say what
happens if we were to replace call-by-value with call-by-name within some program; that is
the goal of the second step.

The second step is to identify maps between the call-by-value and call-by-name interpre-
tations, forming Galois connections (one for each source-language type) between the two
interpretations. We compose these maps with the translations of expressions, to arrive at
two terms that can be compared directly. For this step we assume a stronger condition on
computational effects than in the first, saying informally that effects can be thunked. Under
this condition we show that the maps between call-by-value and call-by-name represent the
relations from the first step. By combining this fact with Theorem 4.7 we prove a result that
directly relates the two terms we construct by composition with the Galois connections.

We therefore arrive at a general reasoning principle (Theorem 6.2) that we use to
compare call-by-value with call-by-name. Given any preorder ≼ that captures the property
we wish to show about programs, our reasoning principle gives conditions that implyM ≼M ′,
where M ′ is constructed as above by replacing call-by-value with call-by-name. We apply
our reasoning principle to examples by choosing different relations ≼; each of these relations
indicates the extent to which changing evaluation order affects the behaviour of the program.
In the divergence example N ≼ N ′ is defined to mean termination of N implies termination
of N ′ with the same result; in the other examples ≼ similarly mirrors the properties described
informally above.

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:3

Rather than just considering some fixed collection of (allowable) effects, we work
abstractly and identify properties of computational effects that enable us to relate call-by-
value and call-by-name.

Our reasoning principle relies on the existence of some denotational model M of the
computational effects, and we reason primarily inside M. In the first step we in fact relate
the behaviour of the call-by-value and call-by-name translations of terms within the given
model M. On the other hand, in the second step we are able to prove a result (our reasoning
principle Theorem 6.2) in which the conclusion is independent of M (though Theorem 6.2
does assume the existence of a suitable M, since the proof relies on the first step).

Crucially, we use order-enriched models, which come with a partial order on the
denotations of terms. The ordering on denotations is necessary to obtain a general reasoning
principle. (Our example properties cannot be proved by showing that denotations are equal,
because they are not symmetric.) Working inside the semantics rather than using syntactic
logical relations makes it easier to prove and to use our reasoning principle, especially for
the divergence example.

In Section 2 we summarize the call-by-push-value calculus (CBPV) and the call-by-value
and call-by-name translations. We then make the following contributions:

• We describe an order-enriched categorical semantics for CBPV (Section 3).
• We define a family of relations for comparing the observable behaviours of a term of
call-by-value type with a term of call-by-name type (Section 4). We prove that, for effects
satisfying certain conditions, the call-by-value and call-by-name translations of expressions
are related by these (Theorem 4.7). As a corollary, we directly relate the call-by-value
and call-by-name translations of closed expressions of type bool (Corollary 4.8).

• We define the Galois connections between the call-by-value and call-by-name translations
(Section 5), and show that they represent the relations from the first step (Lemma 5.8).

• We use the Galois connections to prove a novel reasoning principle (Theorem 6.2) that
relates the call-by-value and call-by-name translations of expressions (Section 6).

We apply our reasoning principle to three different examples: no effects, divergence, and
nondeterminism. In this way we establish all of three facts listed at the beginning of this
introduction. Our motivation is partly to demonstrate the Galois connection technique
as a way of reasoning about different semantics of a given language. Call-by-value and
call-by-name is one example of this (and Reynolds’s original application to direct and
continuation semantics is another).

This paper is a revised and extended version of [MM22]. The primary difference is the
addition of Section 4, containing the first step outlined above. The conference version [MM22]
skips this step and goes directly to the Galois connections. The first step in particular
enables us to prove a statement about closed terms of type bool (Corollary 4.8) under
weaker assumptions than in the conference version [MM22, Corollary 22]. We also add an
extra example (immutable state), add products to the source language, and include more
detailed proofs than in the conference version.

13:4 D. McDermott and A. Mycroft Vol. 20:1

2. Call-by-push-value, call-by-value, and call-by-name

Levy [Lev99, Lev06] introduced call-by-push-value (CBPV) as a calculus that captures both
call-by-value and call-by-name. We reason about the relationship between call-by-value and
call-by-name evaluation inside CBPV.1

The syntax of CBPV terms is stratified into two kinds: values V,W do not reduce,
computations M,N might reduce (possibly with computational effects). The syntax of types
is similarly stratified into value types A,B and computation types C,D.

value types A,B ::= unit | A1 ×A2 | bool | UC

computation types C,D ::= C1 × C2 | A→ C | FA
values V,W ::= x | () | (V1, V2) | true | false | thunkM

computations M,N ::= λ{1.M1, 2.M2} | 1‘M | 2‘M
| λx :A.M | V ‘M | returnV | M to x.N

| match V with (x1, x2).M

| if V then M1 else M2 | forceV

We restrict to only the subset of CBPV required for this paper.
The value type UC is the type of thunks of computations of type C. Elements of

UC are introduced using thunk: the value thunkM is the suspension of the computation
term M . The corresponding eliminator is force, which behaves as the inverse of thunk.
Computation types include binary products; the pairing of two computations M1 and M2 is
written λ{1.M1, 2.M2}, and the first and second projections are 1‘M and 2‘M . Computation
types also include function types (where functions send values to computations). Function
application is written V ‘M , where V is the argument and M is the function to apply. The
returner type FA has as elements computations that return elements of the value type
A; these computations may have effects. Elements of FA are introduced by return; the
computation returnV immediately returns the value V (with no effects). Computations can
be sequenced using M to x.N . This first evaluates M (which is required to have returner
type), and then evaluates N with x bound to the result ofM . (It is similar to M >>= \x -> N

in Haskell.) The syntax we give here does not include any method of introducing effects; we
extend CBPV with some example computational effects in Section 2.2.

The evaluation order in CBPV is fixed for each program. The only primitive that causes
the evaluation of two separate computations is to, which implements eager sequencing.
Thunks give us more control over the evaluation order: they can be arbitrarily duplicated
and discarded, and can be forced in any order chosen by the program. This is how CBPV
captures both call-by-value and call-by-name (see Section 2.1 below).

CBPV has two typing judgments: Γ ⊢ V : A for values and Γ⊢cM : C for computations.
Typing contexts Γ are ordered lists of (variable, value type) pairs. We require that no variable
appears more than once in any typing context. Figure 1 gives the typing rules. Rules that
add a new variable to a typing context implicitly require that the variable is fresh. We write
⋄ for the empty typing context, V : A as an abbreviation for ⋄ ⊢ V : A, and M : C as an
abbreviation for ⋄ ⊢cM : C.

1Our use of CBPV should not be regarded as essential. We use it here because it is known to capture
call-by-value and call-by-name in a strong sense (see [Lev99]). It may be possible to replace CBPV with
some other language that captures call-by-value and call-by-name, and obtain similar results to ours.

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:5

Γ ⊢ V : A

Γ ⊢ x : A
if (x : A) ∈ Γ

Γ ⊢ () : unit

Γ ⊢ V1 : A1 Γ ⊢ V2 : A2

Γ ⊢ (V1, V2) : A1 ×A2

Γ ⊢ true : bool Γ ⊢ false : bool

Γ ⊢cM : C

Γ ⊢ thunkM : UC

Γ ⊢cM : C

Γ ⊢cM1 : C1 Γ ⊢cM2 : C2

Γ ⊢c λ{1.M1, 2.M2} : C1 × C2

Γ ⊢cM : C1 × C2

Γ ⊢c 1‘M : C1

Γ ⊢cM : C1 × C2

Γ ⊢c 2‘M : C2

Γ, x : A ⊢cM : C

Γ ⊢c λx :A.M : A→ C

Γ ⊢ V : A Γ ⊢cM : A→ C

Γ ⊢c V ‘M : C

Γ ⊢ V : A

Γ ⊢c returnV : FA

Γ ⊢cM : FA Γ, x : A ⊢c N : C

Γ ⊢cM to x.N : C

Γ ⊢ V : A1 ×A2 Γ, x1 : A1, x2 : A2 ⊢cM : C

Γ ⊢c match V with (x1, x2).M : C

Γ ⊢ V : bool Γ ⊢cM1 : C Γ ⊢cM2 : C

Γ ⊢c if V then M1 else M2 : C

Γ ⊢ V : UC

Γ ⊢c forceV : C

Figure 1. CBPV typing rules

λ{1.M1, 2.M2} ⇓ λ{1.M1, 2.M2}
M ⇓ λ{1. N1, 2. N2} Ni ⇓ R

i‘M ⇓ R
i ∈ {1, 2}

λx :A.M ⇓ λx :A.M
M ⇓ λx :A.N N [x 7→ V] ⇓ R

V ‘M ⇓ R

returnV ⇓ returnV

M ⇓ returnV N [x 7→ V] ⇓ R
M to x.N ⇓ R

M1 ⇓ R
if true then M1 else M2 ⇓ R

M2 ⇓ R
if false then M1 else M2 ⇓ R

M [x1 7→ V1, x2 7→ V2] ⇓ R
match (V1, V2) with (x1, x2).M ⇓ R

M ⇓ R
force (thunkM) ⇓ R

Figure 2. Big-step operational semantics of CBPV

We give an operational semantics for CBPV. This consists of a big-step evaluation
relation M ⇓ R, which means the computation M evaluates to R. Here R ranges over

13:6 D. McDermott and A. Mycroft Vol. 20:1

terminal computations, which are the subset of computations with an introduction form on
the outside:

R ::= λ{1.M1, 2.M2} | λx :A.M | returnV
We only evaluate closed, well-typed computations, so when we write M ⇓ R we assume
M : C for some C (this implies R : C). Reduction therefore cannot get stuck. The rules
defining ⇓ are given in Figure 2. All terminal computations evaluate to themselves. Products
of computations are lazy : to evaluate a projection i‘M , only the ith component of the pair
M is evaluated. Since we have not yet included any way of forming impure computations, the
semantics is deterministic and normalizing: given any M : C, there is exactly one terminal
computation R such that M ⇓ R. Section 2.2 extends the semantics in ways that violate
these properties. We are primarily interested in evaluating computations of returner type.

A CBPV program is a closed computation M : Fbool. The reasoning principle we
give for call-by-value and call-by-name relates open terms in program contexts. A program
relation consists of a preorder2 ≼ on programs. For example, we could use

M ≼M ′ if and only if ∀V :bool. (M ⇓ returnV) ⇒ (M ′ ⇓ returnV)

We could also use, for example, the total relation for ≼ (and in this case apply our reasoning
principle for call-by-value and call-by-name even if we include e.g. mutable state as a side
effect – but then of course the conclusion of our reasoning principle would be trivial). Given
any program relation ≼, we define a contextual preorder M ≼Γ

ctx M
′ on arbitrary well-typed

computations (in typing context Γ) by considering the behaviour of M and M ′ in programs
as follows. A computation context E is a computation term, with a single hole □ where
a computation term is expected. We write E [M] for the computation that results from
replacing □ with M (which may capture some of the free variables of M). For example, if E
is the computation context N to x.□ then E [returnx] is the computation N to x. returnx,
where x is captured. We use computation contexts to define ≼Γ

ctx.

Definition 2.1 (Contextual preorder). Suppose that ≼ is a program relation, and that
Γ ⊢cM : C and Γ ⊢cM ′ : C are two computations of the same type. We write M ≼Γ

ctx M
′ if,

for all computation contexts E such that E [M], E [M ′] : Fbool, we have E [M] ≼ E [M ′]. We
writeM ∼=Γ

ctx M
′, and say thatM andM ′ are contextually equivalent, when bothM ≼Γ

ctx M
′

and M ′ ≼Γ
ctx M hold.

We sometimes omit Γ, and write just M ≼ctx M
′ or M ∼=ctx M

′.

2.1. Call-by-value and call-by-name. We use CBPV (instead of e.g. Moggi’s monadic
metalanguage [Mog91]) because it captures both call-by-value and call-by-name in a strong
sense (see the introduction of [Lev99] for a detailed discussion of this). Levy [Lev99] gives
two compositional translations from a source language into CBPV: one for call-by-value and
one for call-by-name. We recall both translations in this section; our goal is to reason about
the relationship between them.

For the source language, we use the following syntax of types τ and expressions e:

τ ::= unit | bool | τ1 × τ2 | τ → τ ′

e ::= x | () | (e1, e2) | fst e | snd e | true | false | if e0 then e1 else e2 | λx :τ. e | e e′

2We do not actually need to assume that ≼ is reflexive or transitive at any point, but because of constraints
we add later (such as existence of an adequate model), we do not expect there to be any interesting examples
in which ≼ is not a preorder.

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:7

We include two base types unit and bool to be used in examples.3 The source language
has a typing judgement of the form Γ ⊢ e : τ , defined by the usual rules.

The two translations from the source language to CBPV are defined in Figure 3. For call-
by-value, each source language type τ is mapped to a CBPV value type VLτ M that contains
the results of call-by-value computations. For call-by-name, τ is translated to a computation
type N Lτ M, which contains the computations themselves. Products in call-by-value use the
value-type products of CBPV (which means they are necessarily strict : both components of a
pair are always evaluated). For call-by-name we give a lazy interpretation of binary products,
using products of CBPV computation types. (Though note that we do not interpret unit
as a nullary product of computation types. We instead treat unit as a base type, so that
effects can happen at type unit, which matches typical functional languages.) Functions
under the call-by-value translation accept values of type VLτ M as arguments; arguments are
evaluated before being passed to the function. Under the call-by-name translation, functions
accept thunks of computations as arguments; instead of evaluating them, arguments are
thunked before passing them to call-by-name functions. Source-language typing contexts
Γ are translated to CBPV typing contexts VLΓM and N LΓM. In call-by-value they contain
values, in call-by-name they contain thunks of computations. Source-language expressions e
are mapped to CBPV computations VLeM and N LeM. The translation uses some auxiliary
program variables, which are assumed fresh.

For call-by-value we arbitrarily choose left-to-right evaluation for both pairing and
function application. Under the call-by-name translation, computational effects occur only
at the base types unit and bool (since this is where the returner types appear).

Of course, we have to justify that these translations actually capture call-by-value and
call-by-name. There are two semantics of interest for the source language: a call-by-value
semantics (that evaluates left-to-right), and a call-by-name semantics (with lazy products).
Since we consider the observable behaviour of CBPV terms, the properties we want are that
if the call-by-value translations VLeM and VLe′M have the same observable behaviour then e
and e′ have the same observable behaviour with respect to the call-by-value semantics, and
similarly for call-by-name. Levy [Lev99] proves both of these properties (though without
products in the source language). We take this as the required justification, and do not give
the details.

2.2. Examples. We consider three collections of (allowable) effects as examples throughout
the paper.

Example 2.2 (No effects). We include the simplest possible example: the case where there
are no computational effects at all. For this example, call-by-value and call-by-name turn
out to have identical behaviour. We define the program relation M ≼pure M

′ (for closed
computations M,M ′ : Fbool) as:

M ≼pure M
′ if and only if ∃V :bool. (M ⇓ returnV) ∧ (M ′ ⇓ returnV)

In other words, M and M ′ both evaluate to the same result V . Since evaluation is
deterministic, V is necessarily unique. The contextual preorder M ≼Γ

ctx M ′ means if
we construct two programs by wrapping M and M ′ in the same computation context, then

3Unlike in Levy [Lev99], we do not include general sum types, only bool. We expect that including
arbitrary sum types would complicate Section 4, because it is difficult to extend logical relations of varying
arity with sums. The difficulty, and techniques for dealing with it, are discussed e.g. in [AS19, FS99, Kat08].

13:8 D. McDermott and A. Mycroft Vol. 20:1

type τ 7→ value type VLτ M

unit 7→ unit
τ1 × τ2 7→ VLτ1M × VLτ2M
bool 7→ bool

τ → τ ′ 7→ U(VLτ M → F(VLτ ′M))

typing context Γ 7→ typing context VLΓM

⋄ 7→ ⋄
Γ, x : τ 7→ VLΓM, x : VLτ M

expression Γ ⊢ e : τ 7→ computation VLΓM ⊢c VLeM : F(VLτ M)

x 7→ returnx
() 7→ return ()

(e1, e2) 7→ VLe1M to z1.VLe2M to z2. return (z1, z2)
fst e 7→ VLeM to z.match z with (z1, z2). return z1
snd e 7→ VLeM to z.match z with (z1, z2). return z2
true 7→ return true
false 7→ return false

if e0 then e1 else e2 7→ VLe0M to z. if z then VLe1M else VLe2M
λx :τ. e 7→ return thunkλx :VLτ M.VLeM

e e′ 7→ VLeM to y.VLe′M to z. z ‘ force y

(a) Call-by-value translation VL−M

type τ 7→ computation type N Lτ M

unit 7→ F unit
τ1 × τ2 7→ N Lτ1M ×N Lτ2M
bool 7→ F bool

τ → τ ′ 7→ (U(N Lτ M)) → N Lτ ′M

typing context Γ 7→ typing context N LΓM

⋄ 7→ ⋄
Γ, x : τ 7→ N LΓM, x : U(N Lτ M)

expression Γ ⊢ e : τ 7→ computation N LΓM ⊢c N LeM : N Lτ M

x 7→ forcex
() 7→ return ()

(e1, e2) 7→ λ{1.N Le1M, 2.N Le2M}
fst e 7→ 1 ‘N LeM
snd e 7→ 2 ‘N LeM
true 7→ return true
false 7→ return false

if e0 then e1 else e2 7→ N Le0M to z. if z then N Le1M else N Le2M
λx :τ. e 7→ λx :U(N Lτ M).N LeM

e e′ 7→ (thunkN Le′M) ‘N LeM

(b) Call-by-name translation N L−M

Figure 3. Translations from the source language into CBPV

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:9

these two programs evaluate to the same result. This relation is symmetric. Our other
examples use non-symmetric relations.

Example 2.3 (Divergence). For our second example, the only effect is divergence (via
recursion). In this case, call-by-value and call-by-name do not have identical behaviour (they
are not related by ≼ctx as it is defined in our no-effects example). We instead show that
replacing call-by-value with call-by-name does not change a terminating program into a
diverging one.

We extend our two languages with recursion. For CBPV we extend the syntax of
computations with fixed points recx :UC.M , and correspondingly extend the type system
and operational semantics with the following rules:

Γ, x : UC ⊢c M : C

Γ ⊢c recx :UC.M : C

M [x 7→ thunk (recx :UC.M)] ⇓ R
recx :UC.M ⇓ R

The variable x is bound to a thunk of the recursive computation, so recursion is done by
forcing x. (This is not the only way to add recursion to CBPV [DCL18], but is the most
convenient for our purposes.) Of course, by adding recursion we lose normalization (but the
semantics is still deterministic). We extend the source language, and the two translations
into CBPV, with recursive functions:

e ::= . . . | rec f :τ → τ ′. λx. e
Γ, f : τ → τ ′, x : τ ⊢ e : τ ′

Γ ⊢ rec f :τ → τ ′. λx. e : τ → τ ′

VLrec f :τ → τ ′. λx. eM = return thunk (rec f :U(VLτ M → F(VLτ ′M)). λx :VLτ M.VLeM)

N Lrec f :τ → τ ′. λx. eM = rec f :U(U(N Lτ M) → N Lτ ′M). λx :U(N Lτ M).N LeM

Again, the translations are the same as those given by Levy [Lev99], except that Levy has
general fixed points for call-by-name, rather than just recursive functions. The expression
Ωτ = ((rec f : bool → τ. λx. f x) false) : τ enables us to distinguish between call-by-
value and call-by-name: (λx :τ. true)Ωτ diverges in call-by-value but not in call-by-name.
In particular, we have N L(λx :τ. true) Ωτ M ⇓ return true, but there is no R such that
VL(λx :τ. true) Ωτ M ⇓ R.

For this example, we define the program relation ≼div by

M ≼div M
′ if and only if ∀V :bool. (M ⇓ returnV) ⇒ (M ′ ⇓ returnV)

so that M ≼Γ
ctx M

′ informally means if a program containing M terminates with some result
then the same program with M ′ instead of M terminates with the same result.

Example 2.4 (Nondeterminism). For our third example, we consider finite nondeterminism.
Again call-by-value and call-by-name have different behaviour, but any result of a call-by-
value execution is also a result of a call-by-name execution (if suitable nondeterministic
choices are made).

We consider CBPV without recursion, but augmented with computations failC for
nullary nondeterministic choice and M or N for binary nondeterministic choice between
computations; the typing and evaluation rules are standard:

Γ ⊢c failC : C

Γ ⊢cM : C Γ ⊢c N : C

Γ ⊢cM orN : C

M ⇓ R
M orN ⇓ R

N ⇓ R
M orN ⇓ R

13:10 D. McDermott and A. Mycroft Vol. 20:1

(There is no R such that failC ⇓ R.) The computation failC is the unit for or, so failC orM
and M or failC have the same behaviour as M . For each closed computation M : FA there
might be zero, one or several values V : A such that M ⇓ returnV .

We similarly include nullary and binary nondeterminism in the source language, and
extend the call-by-value and call-by-name translations:

e ::= . . . | failτ | e or e′
Γ ⊢ failτ : τ

Γ ⊢ e : τ Γ ⊢ e′ : τ
Γ ⊢ e or e′ : τ

VLfailτ M = failF(VLτ M) N Lfailτ M = failN Lτ M

VLe or e′M = VLeMorVLe′M N Le or e′M = N LeMorN Le′M

As an example, evaluating the expression e = (λx. if x then x else true)(true or false)
under call-by-value necessarily results in true, but under call-by-name we can also get false.
(We have VLeM ̸⇓ return false but N LeM ⇓ return false.)

For nondeterminism, we define ≼nd in the same way as our divergence example:

M ≼nd M
′ if and only if ∀V :bool. (M ⇓ returnV) ⇒ (M ′ ⇓ returnV)

This captures the property that any result that arises from an execution of M (which may
involve call-by-value) might arise from an execution of M ′ (which may involve call-by-name).

Example 2.5 (Immutable state). Finally, we consider the basic languages enriched with
an extra construct for getting the value of a immutable state whose value is either true or
false. Once again we do not expect there to be any difference between call-by-value and
call-by-name, and it is indeed the case that if e is a closed expression of type bool, then
call-by-value and call-by-name evaluations of e have the same behaviour (this is an instance
of Corollary 4.8). Notably however, the model we use for this example fails to satisfy the
assumptions of our main theorem (Theorem 6.2).

We augment CBPV with a computation get. This gets the value of the state, producing
either true or false.

Γ ⊢c get : Fbool

Big-step evaluation has a slightly different form in this case. We write M ⇓b R to mean M
evaluates to R when the state is b ∈ {true, false}. The rules are those of Figure 2 (with the
subscript b added), plus

get ⇓true return true get ⇓false return false

Again we extend the source language, and also the call-by-value and call-by-name translations:

e ::= . . . | get
Γ ⊢ get : bool

VLgetM = N LgetM = get

We define the program relation ≼get as follows:

M ≼getM
′ if and only if ∀b ∈ {true, false}. ∃V :bool. (M ⇓b returnV) ∧ (M ′⇓b returnV)

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:11

3. Order-enriched denotational semantics

We give a denotational semantics for CBPV, which we use to prove instances of ≼ctx. Since
≼ctx is not in general symmetric, we use order-enriched models, which come with partial
orders ⊑ between denotations. In an adequate model, JMK ⊑ JNK implies M ≼ctx N . Our
semantics is based on Levy’s algebra models [Lev06] for CBPV, in which each computation
type is interpreted as a monad algebra. (We restrict to algebra models for simplicity. Other
forms of model, such as adjunction models [Lev03] can be used for the same purpose.)

3.1. Order-enriched categories and strong monads. We define the basic categorical
notions we need for the rest of the paper. We assume no knowledge of enriched category
theory; instead we give the relevant order-enriched (specifically Poset-enriched) definitions
here. (We do however assume some basic ordinary category theory.)

Definition 3.1. A Poset-category C is an ordinary category, together with a partial order
⊑ on each hom-set C(X,Y), such that composition is monotone.

If C is a Poset-category, we refer to the ordinary category as the underlying ordinary
category, and write |C| for the class of objects.

Example 3.2. We use the following three Poset-categories.

Poset-category C Objects X ∈ |C| Morphisms f : X → Y Order f ⊑ f ′

Set sets functions equality
Poset posets monotone functions pointwise
ωCpo ωcpos ω-continuous functions pointwise

In each case, composition and identities are defined in the usual way. For Set, since the
hom-posets Set(X,Y) are discrete, all of the Poset-enriched definitions coincide with the
ordinary (unenriched) definitions. The objects of ωCpo are posets (X,⊑) for which ⊑
is ω-complete, i.e. for which every ω-chain x0 ⊑ x1 ⊑ · · · has a least upper bound

⊔
x.

Morphisms are ω-continuous functions, i.e. monotone functions that preserve least upper
bounds of ω-chains.

Let C be a Poset-category. We say that C is cartesian when its underlying category
has a terminal object 1 and binary products X1 × X2, such that the pairing functions
⟨−,−⟩ : C(W,X1)×C(W,X2) → C(W,X1×X2) are monotone. We write πi : X1×X2 → Xi

for the projections from a product, and write ⟨⟩X : X → 1 for the unique map into the
terminal object. In every cartesian category, there are canonical associativity isomorphisms
assocX1,X2,X3 : (X1 × X2) × X3 → X1 × (X2 × X3). We say that C is cartesian closed
when it is cartesian and its underlying category has exponentials X ⇒ Y for which the
currying functions Λ : C(W ×X,Y) → C(W,X ⇒ Y) are monotone. We write evX,Y for
the evaluation morphism Λ−1id : (X ⇒ Y)×X → Y .

Binary coproducts in C are just binary coproducts in the underlying ordinary category,
except that the copairing functions [−,−] : C(X1,W)×C(X2,W) → C(X1 +X2,W) are
required to be monotone. We write inl : X1 → X1 +X2 and inr : X2 → X1 +X2 for the
coprojections. The Poset-categories Set, Poset, and ωCpo are all cartesian closed, and
have binary coproducts given by disjoint union.

13:12 D. McDermott and A. Mycroft Vol. 20:1

Above we ask for monotonicity of the bijections

⟨−,−⟩ : C(W,X1)×C(W,X2) → C(W,X1 ×X2)

Λ : C(W ×X,Y) → C(W,X ⇒ Y)

[−,−] : C(X1,W)×C(X2,W) → C(X1 +X2,W)

We do not need to require monotonicity of their inverses explictly, because this holds
automatically. In particular, the uncurrying functions Λ−1 : C(W,X ⇒ Y) → C(W ×X,Y)
are monotone because Λ−1f = evX,Y ◦ (f × idX), and ◦ and × are both monotone.

We interpret computation types as (Eilenberg–Moore) algebras for an order-enriched
monad T, which we need to be strong (just as models of Moggi’s monadic metalan-
guage [Mog91] use a strong monad). The definitions of strong Poset-monad and of T-
algebra we give are slightly non-standard, but are equivalent to the standard ones (see for
example [MU22]). In particular, it is more convenient for us to bake the strength into the
(Kleisli) extension of the monad instead of having a separate strength.

Definition 3.3 (Strong Poset-monad). Let C be a cartesian Poset-category. A strong
Poset-monad T on C consists of:

• an object TX ∈ |C| for each X ∈ |C|;
• a morphism ηX : X → TX for each X ∈ |C| (the unit);

• a monotone function (−)†
W×□

: C(W ×X,TY) → C(W × TX, TY) (Kleisli extension)
for each W,X, Y ∈ |C|.

These are required to satisfy the following four laws.4

• Naturality of extension in W :

f †
W×□ ◦ (w × idTX) = (f ◦ (w × idX))

†W ′×□

for all f :W ×X → TY and w :W ′ →W .
• Left unit:

f †
W×□ ◦ (idW × ηX) = f

for all f :W ×X → TY .
• Right unit:

(ηX ◦ π2)†
1×□

= π2
for all X ∈ |C|.

• Associativity:

(g†
W ′×□ ◦ (idW ′×f) ◦ assoc)

†(W ′×W)×□

= g†
W ′×□ ◦ (idW ′×f †W×□

) ◦ assoc
for all f :W ×X → TY and g :W ′ × Y → TZ.

Specializing the Kleisli extension of T to W = 1 produces a (non-strong) extension

operator (−)† : C(X,TY) → C(TX, TY), satisfying the usual monad laws:

f † ◦ ηX = f ηX
† = idX (g† ◦ f)† = g† ◦ f †

We use this to define, for every f : X → Y , a morphism Tf : TX → TY by Tf = (ηY ◦ f)†.
The latter definition makes T into a Poset-functor : the mapping f 7→ Tf is monotone, and

4The conference version [MM22] of this paper incorrectly omits naturality in W from the definition of
strong Poset-monad and from the definition of Eilenberg–Moore algebra. (Naturality in W is required in
[MU22, Definition 4.1].)

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:13

preserves identities and composition. The definition of T on morphisms also ensures that
the unit and Kleisli extension of T satisfy the following naturality laws:

Tf ◦ηX = ηY ◦f (Tg ◦ f)†
W×□

= Tg ◦f †W×□
(f ◦ (idW × g))†

W×□
= f †

W×□ ◦ (idW ×Tg)

In the notation f †
W×□

: W × TX → TY , the square □ indicates the position of T in
the domain. Since products are symmetric, choosing to put T to the right of W is arbitrary.
We construct a Kleisli extension operator with the square to the left as follows:

f †
□×W

= (f ◦ ⟨π2, π1⟩)†
W×□

◦ ⟨π2, π1⟩ : TX ×W → TY (where f : X ×W → TY)

We also define two natural transformations for sequencing of computations: seqL for left-to-
right and seqR for right-to-left, as follows.

seqLX1,X2
= (ηX1×X2

†X1×□
)
†□×TX2

: TX1 × TX2 → T (X1 ×X2)

seqRX1,X2
= (ηX1×X2

†□×X2
)
†TX1×□

: TX1 × TX2 → T (X1 ×X2)

We further define an effectful pairing operation ⟨⟨−,−⟩⟩:

⟨⟨f1, f2⟩⟩ = seqLX1,X2
◦ ⟨f1, f2⟩ : W → T (X1 ×X2) (where fi :W → TXi)

This evaluates from left to right; we do not need the right-to-left version.

Definition 3.4 (Eilenberg–Moore algebra). Let T be a strong Poset-monad on a cartesian

Poset-category C. A T-algebra Z = (Z, (−)‡) is a pair of:

• an object Z ∈ |C| (the carrier);

• a monotone function (−)‡
W×□

: C(W ×X,Z) → C(W × TX,Z) (the extension operator)
for each W,X ∈ |C|.

These are required to satisfy the following three laws.

• Naturality in W :

f ‡
W×□ ◦ (w × idTX) = (f ◦ (w × idX))

‡W ′×□

for all f :W ×X → Z and w :W ′ →W .
• Left unit:

f ‡
W×□ ◦ (idW × ηX) = f

for all f :W ×X → Z.
• Associativity:

(g‡
W ′×□ ◦ (idW ′×f) ◦ assoc)

‡(W ′×W)×□

= g‡
W ′×□ ◦ (idW ′×f †W×□

) ◦ assoc

for all f :W ×X → TY and g :W ′ × Y → Z.

For each T-algebra Z, we write UTZ for the carrier Z ∈ |C|.

Just as for the extension operator of a strong Poset-monad, we specialize the extension

operator of a T-algebra to W = 1 and obtain a (non-strong) extension operator (−)‡ :
C(X,Z) → C(TX,Z). We also have an extension operator with reversed products, written

(−)‡
□×W

: C(X ×W,Z) → C(TX ×W,Z).
The following constructions of algebras are standard.

13:14 D. McDermott and A. Mycroft Vol. 20:1

Definition 3.5. Let T be a strong Poset-monad on a cartesian closed Poset-category C.

• The free T-algebra FTX on an object X ∈ |C| has carrier TX; the extension operator is

Kleisli extension (−)† .
• If Z1 and Z2 are T-algebras, then their product Z1 × Z2 is the T-algebra with carrier
Z1 × Z2, and extension operator

f ‡
W×□

= ⟨(π1 ◦ f)‡
W×□

, (π2 ◦ f)‡
W×□

⟩
• If Y ∈ |C| and Z is a T-algebra, then their power Y ⇒ Z is the T-algebra with carrier
Y ⇒ Z and extension operator

f ‡
W×□

= Λ((Λ−1f ◦ βW,Y,X)
‡(W×Y)×□

◦ βW,TX,Y)
where βX1,X2,X3 = ⟨⟨π1 ◦ π1, π2⟩, π2 ◦ π1⟩ : (X1 ×X2)×X3 → (X1 ×X3)×X2.

We use these constructions to interpret CBPV computation types: returner types FA are
interpreted as free T-algebras, product types C1 ×C2 are interpreted as product T-algebras,
and function types A→ C are interpreted as power T-algebras.

3.2. Models of CBPV. We define the notion of (order-enriched, algebra) model as follows.

Definition 3.6. A model M = (C,T) of CBPV consists of

• a cartesian closed Poset-category C that admits the coproduct 2 = 1 + 1;
• a strong Poset-monad T on C.

Given a model M = (C,T), the interpretation J−K of CBPV is defined in Figure 4. Value
types A are interpreted as objects JAK ∈ |C|, while computation types C are interpreted
as T-algebras. The value type UC is interpreted as the carrier UTJCK of the T-algebra
JCK. Typing contexts Γ are interpreted as objects JΓK ∈ C using the cartesian structure
of C; if (x : A) ∈ Γ then we write πx for the corresponding projection JΓK → JAK. Values
Γ ⊢ V : A (respectively computations Γ ⊢cM : C) are interpreted as morphisms JΓ ⊢ V : AK
(resp. JΓ ⊢cM : CK) in C; we often omit the typing context and type when writing these.
Programs ⋄ ⊢cM : bool are therefore interpreted as morphisms JMK : 1 → T2. To interpret
if , we use the fact that, since C is cartesian closed, products distribute over the coproduct
2 = 1 + 1. This means that for every W ∈ |C|, the coproduct W +W also exists in C, and
the canonical morphism

W +W
[⟨idW ,inl◦⟨⟩W ⟩,⟨idW ,inr◦⟨⟩W ⟩]−−−−−−−−−−−−−−−−−−−→W × 2

has an inverse distW :W × 2 →W +W .
By composing the semantics of CBPV with the two translations of the source language,

we obtain a call-by-value semantics VJ−K = JVL−MK and a call-by-name semantics N J−K =
JN L−MK of the source language. For convenience, we spell out these composed semantics in
Figure 5.

We use the denotational semantics as a tool for proving instances of contextual preorders;
for this we need adequacy.

Definition 3.7. A model of CBPV is adequate with respect to a given program relation ≼
if for all computations Γ ⊢cM : C and Γ ⊢cM ′ : C we have

JΓ ⊢cM : CK ⊑
q
Γ ⊢cM ′ : C

y
⇒ M ≼Γ

ctx M
′

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:15

C-object JAK

JunitK = 1

JA1 ×A2K = JA1K × JA2K
JboolK = 2 (= 1+1)

JUCK = UTJCK

T-algebra JCK

JC1 × C2K = JC1K × JC2K
JA→ CK = JAK ⇒ JCK

JFAK = FTJAK

C-object JΓK

J⋄K = 1

JΓ, x : AK = JΓK × JAK

JΓ ⊢ V : AK : JΓK → JAK

JxK = πx

J()K = ⟨⟩JΓK

J(V1, V2)K = ⟨JV1K, JV2K⟩
JtrueK = inl ◦ ⟨⟩JΓK

JfalseK = inr ◦ ⟨⟩JΓK

JthunkMK = JMK

JΓ ⊢cM : CK : JΓK → UTJCK

Jλ{1.M1, 2.M2}K = ⟨JM1K, JM2K⟩
Ji‘MK = πi ◦ JMK (i ∈ {1, 2})

Jλx :A.MK = ΛJMK

JV ‘MK = Λ−1JMK ◦ ⟨id , JV K⟩
JreturnV K = η ◦ JV K

JM to x.NK = JNK‡
JΓK×□

◦ ⟨id , JMK⟩
Jmatch V with (x, y).MK = JMK ◦ assoc−1 ◦ ⟨id , JV K⟩

Jif V then M1 else M2K = [JM1K, JM2K] ◦ dist ◦ ⟨id , JV K⟩
JforceV K = JV K

Figure 4. Denotational semantics of CBPV

3.3. Examples. We give four different models, one for each of the four examples in Sec-
tion 2.2. Each model is adequate with respect to the corresponding definition of ≼; the
proof in each case is a standard logical relations argument (e.g. [Win93]).

Example 3.8. For CBPV with no effects, we use C = Set. The strong Poset-monad T
is the identity on Set. Each T-algebra Z is completely determined by its carrier Z; the

extension operator (−)‡
W×□

: Set(W ×X,Z) → Set(W ×X,Z) is necessarily the identity.
The interpretation JMK of a closed computation M : Fbool is just an element of 2.

Example 3.9. For divergence, we use C = ωCpo. The strong Poset-monad T freely
adjoins a least element ⊥ to each ωCpo. The unit ηX is the inclusion X ↪→ TX, while
Kleisli extension is given by

f †
W×□

(w, x) =

{
⊥ if x = ⊥
f(w, x) otherwise

A T-algebra Z is equivalently an ωCpo Z with a least element ⊥ ∈ Z. The extension

operator is completely determined once the carrier is fixed; it is analogous to (−)† .
In this case, the product Z1 × Z2 is the set of pairs ordered componentwise, and the

exponential Y ⇒ Z is the set of set of ω-continuous functions ordered pointwise. Hence
Z1 × Z2 has a least element (⊥,⊥) (so forms a T-algebra) whenever Z1 and Z2 have least

13:16 D. McDermott and A. Mycroft Vol. 20:1

type τ 7→ object VJτK ∈ |C|
unit 7→ 1

τ1 × τ2 7→ VJτ1K × VJτ2K
bool 7→ 2

τ → τ ′ 7→ VJτK ⇒ T (VJτ ′K)

typing context Γ 7→ object VJΓK ∈ |C|
⋄ 7→ 1

Γ, x : τ 7→ VJΓK × VJτK

expression Γ ⊢ e : τ 7→ morphism VJeK : VJΓK → T (VJτK) in C

x 7→ πx
() 7→ η1 ◦ ⟨⟩VJΓK

(e1, e2) 7→ ⟨⟨VJe1K,VJe2K⟩⟩
fst e 7→ Tπ1 ◦ VJeK
snd e 7→ Tπ2 ◦ VJeK
true 7→ η2 ◦ inl ◦ ⟨⟩VJΓK
false 7→ η2 ◦ inr ◦ ⟨⟩VJΓK

if e0 then e1 else e2 7→ ([VJe1K,VJe2K] ◦ dist)†
VJΓK×□

◦ ⟨idVJΓK,VJe0K⟩
λx :τ. e 7→ ηVJτ→τ ′K ◦ Λ(VJeK)

e e′ 7→ ev † ◦ ⟨⟨VJeK,VJe′K⟩⟩

(a) Call-by-value semantics VJ−K

type τ 7→ T-algebra N JτK

unit 7→ FT1
τ1 × τ2 7→ N Jτ1K ×N Jτ2K
bool 7→ FT2

τ → τ ′ 7→ (UT(N JτK)) ⇒ N Jτ ′K

typing context Γ 7→ object N JΓK ∈ |C|
⋄ 7→ 1

Γ, x : τ 7→ N JΓK × UT(N JτK)

expression Γ ⊢ e : τ 7→ morphism N JeK : N JΓK → UT(N JτK) in C

x 7→ πx
() 7→ η1 ◦ ⟨⟩N JΓK

(e1, e2) 7→ ⟨N Je1K,N Je2K⟩
fst e 7→ π1 ◦ N JeK
snd e 7→ π2 ◦ N JeK
true 7→ η2 ◦ inl ◦ ⟨⟩N JΓK
false 7→ η2 ◦ inr ◦ ⟨⟩N JΓK

if e0 then e1 else e2 7→ ([N Je1K,N Je2K] ◦ dist)‡
NJΓK×□

◦ ⟨idN JΓK,N Je0K⟩
λx :τ. e 7→ Λ(N JeK)

e e′ 7→ ev ◦ ⟨N JeK,N Je′K⟩

(b) Call-by-name semantics N J−K

Figure 5. Denotational semantics of call-by-value and call-by-name

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:17

elements, and Y ⇒ Z has a least element (the constantly-⊥ function) whenever Z has a
least element.

If Z is a T-algebra, then every ω-continuous function f : Z → Z has a least fixed point
fix f =

⊔
n∈N f

n⊥ ∈ Z. These enable us to interpret recursive computations, by defining

Jrecx :UC.MKρ = fix
(
λx. JMK(ρ, x)

)
. The interpretation JMK of a closed computation

M : Fbool is either ⊥ (signifying divergence), or one of the two elements of 2.

Example 3.10. For finite nondeterminism, we use C = Poset. The strong Poset-monad
T freely adds finite joins to each poset. It is defined by

TX = ({↓S′ | S′ ∈ PfinX},⊆) ηX x = ↓{x} f †
W×□

(w, S) =
⋃
x∈S f(w, x)

where PfinX is the set of finite subsets of X, and ↓S′ = {x ∈ X | ∃x′ ∈ S′. x ⊑ x′} is the
downwards-closure of S′ ⊆ X. Each T-algebra is again completely determined by its carrier;
a T-algebra Z is equivalently a poset Z that has finite joins. The extension operator is

necessarily given by f ‡
W×□

(w, S) =
⊔
x∈S f(w, x). (The latter join exists because S is the

downwards-closure of a finite set, even though S itself might not be finite.) The product
Z1×Z2 is the set of pairs ordered componentwise, with joins given by

⊔
i(zi, z

′
i) = (

⊔
i zi,

⊔
i z

′
i).

The power Y ⇒ Z is the set of monotone functions ordered pointwise, with joins given by
(
⊔
i fi)x =

⊔
i(fix).

We interpret nondeterministic computations using nullary and binary joins:
q
failC

y
ρ = ⊥ JM orNKρ = JMKρ ⊔ JNKρ

The interpretation JMK of a closed computation M : Fbool is one of the four subsets of 2.

Example 3.11. For immutable state, we use C = Set, with the reader monad

TX = (2 ⇒ X) ηXx = λb. x f †
W×□

(w, t) = λb. f(w, t b) b

where 2 = {true, false}. The CBPV computation get is interpreted as

JgetKρ = λb. b

4. The relation between call-by-value and call-by-name

We now return to the main contribution of this paper: relating call-by-value with call-by-
name. Recall the first step outlined in the introduction. We define a family of relations
⋉ (Definition 4.1) that compare the observable behaviour of a denotation of call-by-value
type with a denotation of call-by-name type. The main result of this section is that, under
certain conditions on computational effects, we have

VJeK ⋉ N JeK

for all Γ ⊢ e : τ (Theorem 4.7). Here we work with the denotational semantics, instead of
with the syntax directly, so the relations ⋉ are defined with respect to a fixed model M
that we assume to be given. There is one relation ⋉ for each source-language context Γ and
type τ :

gv ⋉ gn where gv : VJΓK → T (VJτK), gn : N JΓK → UT(N JτK)
To define ⋉, we first give a family of relations

fv RJτKW fn

13:18 D. McDermott and A. Mycroft Vol. 20:1

fv RJτKW fn (where fv :W → T (VJτK) and fn :W → UT(N JτK))

fv RJunitKW fn iff fv ⊑ fn

fv RJτ1 × τ2KW fn iff (Tπ1 ◦ fv) RJτ1KW (π1 ◦ fn) ∧ (Tπ2 ◦ fv) RJτ2KW (π2 ◦ fn)
fv RJboolKW fn iff fv ⊑ fn

fv R
q
τ→ τ ′

y
W
fn iff ∀W ′, w :W ′ →W, gv, gn.

gv RJτKW ′ g
n ⇒ (ev † ◦ ⟨⟨fv ◦ w, gv⟩⟩) R

q
τ ′

y
W ′ (ev ◦ ⟨fn ◦ w, gn⟩)

Figure 6. The relation between call-by-value and call-by-name

that relate elements fv of T (VJτK) with elements fn of UT(N JτK). Here by element we mean
generalized element, so fv and fn are morphisms

fv :W → T (VJτK) fn :W → UT(N JτK)

from some W . The definition of RJτKW is in the style of a logical relation, by induction on
the type τ . The cases are listed in Figure 6. Informally, we have the following.

• For τ = unit and τ = bool, we compare fv and fn directly using the order relation ⊑ on
morphisms in C. (We can do this because T (VJτK) = UT(N JτK).)

• For a product type τ1 × τ2, we compare the first components and compare the second
components. We get these components by composing with the call-by-value and call-by-
name interpretations of the projections fst and snd.

• For a function type τ → τ ′, we relate fv to fn when these give related results when applied
to related arguments. Here we use the call-by-value and call-by-name interpretations of
application.

Note that in the function case we quantify over morphisms w :W ′ →W to permit varying
arities W (cf. the Kripke logical relations of varying arity of [JT93]). (Precisely, this ensures
that RJτK is closed under precomposition with morphisms w :W ′ →W , as in Lemma 4.5(2)
below.)

We define ⋉ in terms of RJ−K. To state the definition, we need some more notation.
Let Γ′ = x1 : A1, . . . , xk : Ak be a CBPV context. Given a morphism fi : W → JAiK for
each i ≤ k, we obtain a morphism ⟨fi⟩i : W → JΓK, by iterated pairing. Given instead a
morphism fi :W → T JAiK for each i, we obtain a morphism ⟨⟨fi⟩⟩i :W → T JΓK by iterated
pairing and left-to-right evaluation:

⟨fi⟩i≤k =

{
⟨⟩W if k = 0

⟨⟨fi⟩i≤(k−1), fk⟩ if k > 0
⟨⟨fi⟩⟩i≤k =

{
η1 ◦ ⟨⟩W if k = 0

⟨⟨⟨⟨fi⟩⟩i≤(k−1), fk⟩⟩ if k > 0

Definition 4.1. Let M be a CBPV model, and let

gv : VJΓK → T (V
q
τ ′

y
) gn : N JΓK → UT(N

q
τ ′

y
)

be morphisms, where Γ = x1 : τ1, . . . , xk : τk. We write

gv ⋉ gn

when, for all objects W ∈ |C| and families of morphisms

(fvi :W → T (VJτiK))i (fni :W → UT(N JτiK))i

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:19

we have

fv1 RJτ1KW fn1 ∧ · · · ∧ fvk RJτkKW fnk ⇒ (gv† ◦ ⟨⟨fvi ⟩⟩i) R
q
τ ′

y
W

(gn ◦ ⟨fni ⟩i)

As we mention above, our goal is relate the observable behaviour of VJeK to the observable
behaviour of N JeK. Precisely, we want to prove VJeK ⋉ N JeK. By considering what this
means for specific expressions e, we can see that this is not true in general, for three reasons:

• Consider the expression

e = (λx :bool. ()) : bool → unit

If we apply this to an argument, then in call-by-value we evaluate the argument but in
call-by-name we do not.

• Consider the expression

e = (λx :bool. if x then x else x) : bool → bool

If we apply this, then in call-by-value the argument is evaluated once, but in call-by-name
the argument is evaluated twice.

• Consider the expression

e = (λx :bool. λy :bool. if y then x else x) : bool → bool → bool

In call-by-value the argument to the outer function is evaluated first, and the argument to
the inner function is evaluated second. In call-by-name the arguments are evaluated in
the opposite order.

This suggests we should assume that computations can be discarded, copied, and
reordered with respect to other computations. Precisely, we want the following properties.

Definition 4.2. Let T be a strong Poset-monad. A morphism f : X → TY is:

• lax discardable when

T ⟨⟩Y ◦ f ⊑ η1 ◦ ⟨⟩X : X → T1

• lax copyable when

T ⟨idY , idY ⟩ ◦ f ⊑ seqLY,Y ◦ ⟨f, f⟩ : X → T (Y × Y)

equivalently, when

T ⟨idY , idY ⟩ ◦ f ⊑ seqRY,Y ◦ ⟨f, f⟩ : X → T (Y × Y)

• lax central when

seqLY,W ◦ (f × idTW) ⊑ seqRY,W ◦ (f × idTW) : X × TW → T (Y ×W)

for all W ∈ |C|.

The non-lax versions of these properties were first defined by Führmann [Füh99].

Example 4.3. For each of our examples from Section 3.3, every morphism f : X → TY is
lax discardable, lax copyable, and lax central.

Here we define these three properties for morphisms in the model M, but there are
similar notions for CBPV computations, as the following lemma shows.

Lemma 4.4. Let Γ⊢cM : FA be a CBPV computation. The following hold for every CBPV
model that is adequate with respect to a program relation ≼.

13:20 D. McDermott and A. Mycroft Vol. 20:1

• If JMK is lax discardable, then

M to x. return () ≼Γ
ctx return ()

• If JMK is lax copyable, then

M to x. return (x, x) ≼Γ
ctx M to x1.M to x2. return (x1, x2)

• If JMK is lax central, then

M to x. force z to y. return (x, y) ≼Γ,z:U(FB)
ctx force z to y.M to x. return (x, y)

Proof. Since we assume adequacy, in each case we can reason inside the model.

• If JMK is lax discardable, then

JM to x. return ()K = T ⟨⟩JAK ◦ JMK
⊑ η1 ◦ ⟨⟩JΓK

= Jreturn ()K

• If JMK is lax copyable, then

JM to x. return (x, x)K = T ⟨id JAK, id JAK⟩ ◦ JMK

⊑ seqLJAK,JAK ◦ ⟨JMK, JMK⟩
= JM to x1.M to x2. return (x1, x2)K

• If JMK is lax central, then

JM to x. force z to y. return (x, y)K = seqLJAK,JBK ◦ (JMK × idT JBK)

⊑ seqRJAK,JBK ◦ (JMK × idT JBK)

= Jforce z to y.M to x. return (x, y)K

We turn to the proof that lax discardability, lax copyability and lax centrality are
sufficient to relate call-by-value to call-by-name. The following two lemmas are useful for
this. The first lemma says that (even without assuming these properties of effects), the
relations RJτK are closed under various operations.

Lemma 4.5. Let M be a CBPV model. For each τ , the family of relations RJτK has the
following closure properties.

(1) For all fv, gv, fn, gn, we have

gv ⊑ fv ∧ fv RJτKW fn ∧ fn ⊑ gn ⇒ gv RJτKW gn

(2) For all w :W ′ →W , and fv, fn, we have

fv RJτKW fn ⇒ (fv ◦ w) RJτKW ′ (f
n ◦ w)

(3) For all fv, fn, we have

fv RJτKW×X fn ⇒ (fv)†
W×□

RJτKW×TX (fn)‡
W×□

(4) For all W1,W2 such that the coproduct W1 +W2 exists, and all fv1 , f
v
2 , f

n
1 , f

n
2 , we have

fv1 RJτKW1
fn1 ∧ fv2 RJτKW2

fn2 ⇒ [fv1 , f
v
2] RJτKW1+W2

[fn1 , f
n
2]

Proof. The proof of each property is by induction on the type τ .

(1) The unit and bool cases are trivial, while the cases for product and function types
follow from the inductive hypothesis by monotonicity of composition and pairing.

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:21

(2) The unit and bool cases follow from monotonicity of composition. The case for product
types follows from the inductive hypothesis. For a function type τ → τ ′ we need to
show, for every w′ :W ′′ →W ′ and gv, gn, that gv RJτKW ′′ gn implies

(ev † ◦ ⟨⟨fv ◦ w ◦ w′, gv⟩⟩) R
q
τ ′

y
(ev ◦ ⟨fn ◦ w ◦ w′, gn⟩)

This follows immediately from the assumption fv RJτ → τ ′KW fn, instantiated with the
morphism w ◦ w′ :W ′′ →W .

(3) The unit and bool cases follow from monotonicity of extension operators. The case for
product types follows from the inductive hypothesis, by naturality of extension operators
and the definition of the product T-algebra:

(Tπi ◦ (fv)†
W×□

) = ((Tπi ◦ fv)†
W×□

) RJτiKW×TX ((πi ◦ fn)‡
W×□

) = (πi ◦ (fn)‡
W×□

)

For a function type τ → τ ′ we show, for every w :W ′ →W × TX and gv, gn satisfying
gv RJτKW ′ gn, that

(ev † ◦ ⟨⟨(fv)†
W×□

◦ w, gv⟩⟩) R
q
τ ′

y
W ′ (ev ◦ ⟨(fn)‡

W×□
◦ w, gn⟩)

By property (2) above, we have

(gv ◦ π2) RJτK(W×X)×W ′ (g
n ◦ π2)

so that fv RJτ → τ ′KW×X fn implies

(ev † ◦ ⟨⟨fv ◦ π1, gv ◦ π2⟩⟩) R
q
τ ′

y
(W×X)×W ′ (ev ◦ ⟨fn ◦ π1, gn ◦ π2⟩)

Hence, by applying (2) and the inductive hypothesis for τ ′, we have hv RJτ ′KW ′ hn,
where we define

hv = (ev † ◦ ⟨⟨fv ◦ π1, gv ◦ π2⟩⟩ ◦ βW,W ′,X)
†(W×W ′)×□

◦ βW,TX,W ′ ◦ ⟨w, idW ′⟩

hn = (ev ◦ ⟨fn ◦ π1, gn ◦ π2⟩ ◦ βW,W ′,X)
‡(W×W ′)×□

◦ βW,TX,W ′ ◦ ⟨w, idW ′⟩

with β as in Definition 3.5. It then remains to show that hv and hn are the two sides
of the required instance of RJτ ′KW ′ , which we prove as follows. To prove we have the
correct left-hand side, we use the associativity law, naturality of Kleisli extension, and
the associativity law again, as follows.

hv = ev † ◦ (⟨⟨fv ◦ π1, gv ◦ π2⟩⟩ ◦ βW,W ′,X)
†(W×W ′)×□

◦ βW,TX,W ′ ◦ ⟨w, idW ′⟩

= ev † ◦ (seqL ◦ (fv × id) ◦ βW,T (VJτK),X)
†(W×T (VJτK))×□

◦ βW,TX,T (VJτK) ◦ ⟨w, gv⟩

= ev † ◦ seqL ◦ ((fv)†
W×□

× idT (VJτK)) ◦ ⟨w, gv⟩

= ev † ◦ ⟨⟨(fv)†
W×□

◦ w, gv⟩⟩

To prove we have the correct right-hand side, we use naturality of extension, and the
definition of power T-algebras, as follows.

hn = (ev ◦ (fn × idUT(N JτK)) ◦ βW,UT(N JτK),X)
‡(W×W ′)×□

◦ βW,TX,UT(N JτK) ◦ ⟨w, gn⟩

= ev ◦ ((fn)‡
W×□

× idUT(N JτK)) ◦ ⟨w, gn⟩

= ev ◦ ⟨(fn)‡
W×□

◦ w, gn⟩

13:22 D. McDermott and A. Mycroft Vol. 20:1

(4) The unit and bool cases are immediate from monotonicity of the copairing operator
[−,−]. For product types, it is enough to note that Tπi ◦ [fv1 , fv2] = [Tπi ◦ fv1 , Tπi ◦ fv2]
and πi ◦ [fn1 , fn2] = [πi ◦ fn1 , πi ◦ fn2], and then apply the inductive hypothesis. For a
function type τ → τ ′, we show that gv RJτKW ′ gn implies

(ev † ◦ ⟨⟨[fv1 , fv2] ◦ w, gv⟩⟩) R
q
τ ′

y
W ′ (ev ◦ ⟨[fn1 , fn2] ◦ w, gn⟩)

where w : W ′ → W1 + W2. To do this, consider the following objects W ′
1,W

′
2 and

morphisms w′
1, w

′
2.

W ′
i =W ′ ×Wi w′

i = π2 :W
′
i →Wi (i ∈ {1, 2})

Property (2) implies
(gv ◦ π1) RJτKW ′

i
(gn ◦ π1)

so from the assumption
fvi R

q
τ → τ ′

y
Wi

fni

we obtain kvi RJτ ′KW ′
i
kni , where

kvi = ev † ◦ ⟨⟨fvi ◦ w′
i, g

v ◦ π1⟩⟩ kni = ev ◦ ⟨fni ◦ w′
i, g

n ◦ π1⟩
Coproducts are distributive (because we assume cartesian closure), so the coproduct
W ′

1 +W ′
2 exists and is isomorphic to W ′ × (W1 +W2). We can therefore apply the

inductive hypothesis for τ , and then (2), to obtain

([kv1 , k
v
2] ◦ h) R

q
τ ′

y
W ′ ([k

n
1 , k

n
2] ◦ h)

where

h :W ′ ⟨idW ′ ,w⟩−−−−−→W ′ × (W1 +W2)
∼=−→W ′

1 +W ′
2

The result follows because

[kv1 , k
v
2] ◦ h = ev † ◦ ⟨⟨[fv1 , fv2] ◦ w, gv⟩⟩ [kn1 , k

n
2] ◦ h = ev ◦ ⟨[fn1 , fn2] ◦ w, gn⟩

The second lemma consists of some technical consequences of lax discardability, lax
copyability and lax centrality; we state them here for use in the proof of Theorem 4.7 below.
For convenience, we render each of the inequalities in the statement of the lemma in the
syntax of CBPV (we will not need the syntactic inequalities in the following, so we omit the
precise statements and proof).

Lemma 4.6. Let T be a strong Poset-monad.

(1) Let f1 : W → TX1 and f2 : W → TX2 be morphisms. For each i ∈ {1, 2}, if fj is lax
discardable for j ̸= i, then

Tπi ◦ ⟨⟨f1, f2⟩⟩ ⊑ fi :W → TXi

M1 to x1.M2 to x2. returnxi ≼ctx Mi (fk = JMkK)
(2) Let f1 :W1 → TX1, f2 :W2 → TX2 and g : X1 ×X2 → TY be morphisms. If f1 is lax

central, then

(g†
X1×□

)
†□×TX2

◦ (f1 × f2) ⊑ (g†
□×X2

)
†TX1×□

◦ (f1 × f2) :W1 ×W2 → TY

M1 to x1.M2 to x2. N ≼ctx M2 to x2.M1 to x1. N (fi = JMiK, g = JNK)
If f2 is lax central, then

(g†
□×X2

)
†TX1×□

◦ (f1 × f2) ⊑ (g†
X1×□

)
†□×TX2

◦ (f1 × f2) :W1 ×W2 → TY

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:23

M2 to x2.M1 to x1. N ≼ctx M1 to x1.M2 to x2. N (fi = JMiK, g = JNK)

(3) Let f :W → TX, g : X → TY and h : X × Y → TZ be morphisms. If f is lax copyable
and lax central, then

(h†
X×□ ◦ ⟨idX , g⟩)

†
◦ f ⊑ (h†

□×Y ◦ (f × idY))
†W×□

◦ ⟨idW , g† ◦ f⟩ :W → TZ

M to x.N to y.N ′ ≼ctx (M to x.N) to y.M to x.N ′ (f = JMK, g = JNK, h =
q
N ′y)

(4) Let f :W → TX, g1 : X → TY1 and g2 : X → TY2 be morphisms. If f is lax copyable
and lax central, then

⟨⟨g1, g2⟩⟩† ◦ f ⊑ ⟨⟨g1† ◦ f, g2† ◦ f⟩⟩ :W → T (Y1 × Y2)

M to x.N1 to y1.
N2 to y2.
return (y1, y2)

≼ctx

(M to x.N1) to y1.
(M to x.N2) to y2.
return (y1, y2)

(f = JMK, gi = JNiK, h =
q
N ′y)

Proof. (1) The following proves the statement for i = 1; the proof for i = 2 is similar.

Tπ1 ◦ ⟨⟨f1, f2⟩⟩ = Tπ1 ◦ T (idX1 × ⟨⟩X2) ◦ ⟨⟨f1, f2⟩⟩
= Tπ1 ◦ ⟨⟨f1, T ⟨⟩X2 ◦ f2⟩⟩ (naturality of extension)

⊑ Tπ1 ◦ ⟨⟨f1, η1 ◦ ⟨⟩W ⟩⟩ (lax discardability of f2)

= Tπ1 ◦ (ηX1×1)
†□×1

◦ ⟨f1, ⟨⟩W ⟩ (left unit law)

= f1 (right unit law)

(2) Lax centrality of f1 implies the first inequality of (2) as follows.

(g†
X1×□

)
†□×TX2

◦ (f1 × f2)

= g† ◦ seqLX1,X2
◦ (f1 × idTX2) ◦ (idW1 × f2) (associativity and left unit laws)

⊑ g† ◦ seqRX1,X2
◦ (f1 × idTX2) ◦ (idW1 × f2) (lax centrality)

= (g†
□×X2

)
†TX1×□

◦ (f1 × f2) (associativity and left unit laws)

For the other inequality, precomposing with the isomorphisms ⟨π2, π1⟩ swaps the roles
of f1 and f2, so that we can reuse the first inequality.

13:24 D. McDermott and A. Mycroft Vol. 20:1

(3) The following proves the result.

(h†
X×□ ◦ ⟨idX , g⟩)

†
◦ f

= (h†
X×□ ◦ (idX × g))

†
◦ T ⟨idX , idX⟩ ◦ f (naturality of extension)

⊑ (h†
X×□ ◦ (idX × g))

†
◦ seqRX,X ◦ ⟨f, f⟩ (lax copyability)

= ((h†
X×□ ◦ (idX × g))

†□×X

)
†TX×□

◦ ⟨f, f⟩ (associativity, left unit)

= ((h†
X×□

)
†□×TY

◦ (f × g))
†W×□

◦ ⟨idW , f⟩ (naturality of extension)

⊑ ((h†
□×Y

)
†TX×□

◦ (f × g))
†W×□

◦ ⟨idW , f⟩ (Lemma 4.6(2))

= ((h†
□×Y ◦ (f × idY))

†W×□

◦ (idW × g))
†W×□

◦ ⟨idW , f⟩ (naturality of extension)

= (h†
□×Y ◦ (f × idY))

†W×□

◦ (idW × g†) ◦ ⟨idW , f⟩ (associativity law)

= (h†
□×Y ◦ (f × idY))

†W×□

◦ ⟨idW , g† ◦ f⟩

(4) The required inequality is equivalent, by postcomposing with the isomorphism T ⟨π2, π1⟩,
to

(seqRY2,Y1 ◦ ⟨g2, g1⟩)
† ◦ f ⊑ seqRY2,Y1 ◦ ⟨g2

† ◦ f, g1† ◦ f⟩

We prove this as follows, using (3) with h = ηY2×Y1
†□×Y1 ◦ (g2 × idY1).

(seqRY2,Y1 ◦ ⟨g2, g1⟩)
† ◦ f

= ((η†
□×Y1 ◦ (g2 × idY1))

†X×□

◦ ⟨idX , g1⟩)
†
◦ f (naturality of extension)

⊑ ((η†
□×Y1 ◦ (g2 × idY1))

†□×Y1

◦ (f × idY1))
†W×□

◦ ⟨idW , g1† ◦ f⟩ (Lemma 4.6(3))

= (η†
□×Y1 ◦ (g2† × idY1) ◦ (f × idY1))

†W×□

◦ ⟨idW , g1† ◦ f⟩ (associativity law)

= seqRY2,Y1 ◦ ⟨g2
† ◦ f, g1† ◦ f⟩ (naturality of extension)

We are now ready to prove the main result of this section.

Theorem 4.7. Let M = (C,T) be a CBPV model. If every morphism f : X → TY is lax
discardable, lax copyable, and lax central, then for every expression Γ ⊢ e : τ we have

VJeK ⋉ N JeK

Proof. Explicitly, we are required to show, for each expression e, that for all families of
morphisms

(fvi :W → T (VJτiK))i (fni :W → UT(N JτiK))i
we have

fv1 RJτ1KW fn1 ∧ · · · ∧ fvk RJτkKW fnk ⇒ (VJeK† ◦ ⟨⟨fvi ⟩⟩i) R
q
τ ′

y
W

(N JeK ◦ ⟨fni ⟩i)

We prove this by induction on e.

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:25

• For a variable xj , we are required to prove

(Tπj ◦ ⟨⟨fvi ⟩⟩i) RJτjKW fnj

A simple induction on j, using Lemma 4.6(1), tells us that

Tπj ◦ ⟨⟨fvi ⟩⟩i ⊑ fvj

The result then follows from the assumption fvj RJτjKW fnj via Lemma 4.5(1).

• For the expression (), we are required to show

(T ⟨⟩VJΓK ◦ ⟨⟨fvi ⟩⟩i) RJunitKW (η1 ◦ ⟨⟩W)

By definition of RJunitK, this is the same as

(T ⟨⟩VJΓK) ◦ ⟨⟨fvi ⟩⟩i) ⊑ (η1 ◦ ⟨⟩W)

which is immediate from lax discardability.
• For a pair (e1, e2), the inductive hypothesis tells us that

(VJejK† ◦ ⟨⟨fvi ⟩⟩i) R
q
τ ′j

y
W

(N JejK ◦ ⟨fni ⟩i)
for each j ∈ {1, 2}. We also have

Tπj ◦ ⟨⟨VJe1K,VJe2K⟩⟩† ◦ ⟨⟨fvi ⟩⟩i
⊑ Tπj ◦ ⟨⟨(VJe1K† ◦ ⟨⟨fvi ⟩⟩i), (VJe2K† ◦ ⟨⟨fvi ⟩⟩i)⟩⟩ (Lemma 4.6(4))

⊑ VJejK† ◦ ⟨⟨fvi ⟩⟩i (Lemma 4.6(1))

so that Lemma 4.5 implies

(Tπj ◦ ⟨⟨VJe1K,VJe2K⟩⟩† ◦ ⟨⟨fvi ⟩⟩i) R
q
τ ′j

y
W

(πj ◦ ⟨N Je1K,N Je2K⟩ ◦ ⟨fni ⟩i)
Hence

(⟨⟨VJe1K,VJe2K⟩⟩† ◦ ⟨⟨fvi ⟩⟩i) R
q
τ ′1 × τ ′2

y
W

(⟨N Je1K,N Je2K⟩ ◦ ⟨fni ⟩i)
as required.

• For fst e, we need to show

(Tπ1 ◦ VJeK† ◦ ⟨⟨fvi ⟩⟩i) R
q
τ ′1

y
W

(π1 ◦ N JeK ◦ ⟨fni ⟩i)
which is immediate from the inductive hypothesis and the definition of RJτ ′1 × τ ′2K.

• The snd case is similar to the fst case.
• For the expression true, we need to show

(T (inl ◦ ⟨⟩VJΓK) ◦ ⟨⟨fvi ⟩⟩i) RJboolKW (η2 ◦ inl ◦ ⟨⟩W)

which means
(T (inl ◦ ⟨⟩VJΓK) ◦ ⟨⟨fvi ⟩⟩i) ⊑ (η2 ◦ inl ◦ ⟨⟩W)

This follows from lax discardability, and naturality of η.
• The false case is similar to the true case.
• For if e0 then e1 else e2, the inductive hypothesis gives us

gv0 ⊑ gn0 gv1 R
q
τ ′

y
W
gn1 gv2 R

q
τ ′

y
W
gn2

where we define

gvj = VJejK† ◦ ⟨⟨fvi ⟩⟩i gnj = N JejK ◦ ⟨fni ⟩i (j ∈ {0, 1, 2})
By applying all of the closure properties of Lemma 4.5, we therefore have

(([gv1 , g
v
2] ◦ dist)

†W×□
◦(idW×gv0)◦⟨id , id⟩)R

q
τ ′

y
W

(([gn1 , g
n
2] ◦ dist)

‡W×□
◦(idW×gn0)◦⟨id , id⟩)

13:26 D. McDermott and A. Mycroft Vol. 20:1

This is not quite what we need, but it does imply the result via another use of Lemma 4.5(1),
as follows. We have

([VJe1K,VJe2K] ◦ dist)†
□×2

= [VJe1K†,VJe2K†] ◦ dist

by precomposing with dist−1 and using the universal property of the coproduct T (VJΓK)+
T (VJΓK). It follows that

VJif e0 then e1 else e2K† ◦ ⟨⟨fvi ⟩⟩

= (([VJe1K,VJe2K] ◦ dist)†
VJΓK×□

◦ ⟨id ,VJe0K⟩)
†
◦ ⟨⟨fvi ⟩⟩i

⊑ (([VJe1K,VJe2K] ◦ dist)†
□×2

◦ (⟨⟨fvi ⟩⟩i × id2))
†W×□

◦ ⟨idW , gv0⟩ (Lemma 4.6(3))

= ([VJe1K†,VJe2K†] ◦ dist ◦ (⟨⟨fvi ⟩⟩i × id2))
†W×□

◦ ⟨idW , gv0⟩

= ([gv1 , g
v
2] ◦ dist)

†W×□
◦ (idW × gv0) ◦ ⟨id , id⟩

We also have

N Jif e0 then e1 else e2K ◦ ⟨fni ⟩i = ([gn1 , g
n
2] ◦ dist)

‡W×□
◦ (idW × gn0) ◦ ⟨id , id⟩

so that Lemma 4.5(1) implies

(VJif e0 then e1 else e2K† ◦ ⟨⟨fvi ⟩⟩) R
q
τ ′

y
W

(N Jif e0 then e1 else e2K ◦ ⟨fni ⟩i)

as required.
• For a λ-abstraction λx : τ. e of type τ → τ ′, consider arbitrary w : W ′ → W and gv, gn

such that

gv RJτKW ′ g
n

We need to show

(ev † ◦ ⟨⟨(VJλx :τ. eK† ◦ ⟨⟨fvi ⟩⟩i ◦ w), gv⟩⟩) R
q
τ ′

y
W ′ (ev ◦ ⟨N Jλx :τ. eK ◦ ⟨fni ⟩i ◦ w, gn⟩)

Applying Lemma 4.5(3) to the assumptions yields

(fvi ◦ w) RJτiKW ′ (f
n
i ◦ w)

so that, by the inductive hypothesis, we have

(VJeK† ◦ ⟨⟨⟨⟨fvi ◦ w⟩⟩i, gv⟩⟩) R
q
τ ′

y
W ′ (N JeK ◦ ⟨⟨fni ◦ w⟩i, gn⟩)

We show that this is the required instance of RJτ ′KW ′ by rewriting both sides as follows.
For the left-hand side, we have

ev † ◦ ⟨⟨(VJλx :τ. eK† ◦ ⟨⟨fvi ⟩⟩i ◦ w), gv⟩⟩

= ev † ◦ ⟨⟨T (Λ(VJeK)) ◦ ⟨⟨fvi ◦ w⟩⟩i, gv⟩⟩

= (ev ◦ (Λ(VJeK)× idVJτK))
† ◦ ⟨⟨⟨⟨fvi ◦ w⟩⟩i, gv⟩⟩ (naturality of extension)

= VJeK† ◦ ⟨⟨⟨⟨fvi ◦ w⟩⟩i, gv⟩⟩

For the right-hand side:

ev ◦ ⟨N Jλx :τ. eK ◦ ⟨fni ⟩i ◦ w, gn⟩ = ev ◦ ⟨Λ(N JeK) ◦ ⟨fni ◦ w⟩i, gn⟩
= N JeK ◦ ⟨⟨fni ◦ w⟩i, gn⟩

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:27

• For an application e e′, where e has type τ → τ ′, the inductive hypothesis for e′ gives us

(V
q
e′

y† ◦ ⟨⟨fvi ⟩⟩i) RJτKW (N
q
e′

y
◦ ⟨fni ⟩i)

so that, by the inductive hypothesis for e with w = idW , we have

(ev † ◦ ⟨⟨(VJeK† ◦ ⟨⟨fvi ⟩⟩i), (V
q
e′

y† ◦ ⟨⟨fvi ⟩⟩i)⟩⟩) R
q
τ ′

y
W

(ev ◦ ⟨(N JeK ◦ ⟨fni ⟩i), (N
q
e′

y
◦ ⟨fni ⟩i)⟩)

We rewrite both sides as follows. For the left we have

V
q
e e′

y† ◦ ⟨⟨fvi ⟩⟩i

= (ev †
VJτ→τ ′K×□

)
†□×T (VJτK)

◦ ⟨VJeK,V
q
e′

y
⟩ ◦ ⟨⟨fvi ⟩⟩ (naturality of extension)

= ev † ◦ ⟨⟨VJeK,V
q
e′

y
⟩⟩† ◦ ⟨⟨fvi ⟩⟩ (left unit, associativity)

⊑ ev † ◦ ⟨⟨(VJeK† ◦ ⟨⟨fvi ⟩⟩i), (V
q
e′

y† ◦ ⟨⟨fvi ⟩⟩i)⟩⟩ (Lemma 4.6(4))

and for the right,

N
q
e e′

y
◦ ⟨fni ⟩i = ev ◦ ⟨(N JeK ◦ ⟨fni ⟩i), (N

q
e′

y
◦ ⟨fni ⟩i)⟩

We therefore have

(V
q
e e′

y† ◦ ⟨⟨fvi ⟩⟩i) R
q
τ ′

y
W

(N
q
e e′

y
◦ ⟨fni ⟩i)

as required.

As a corollary, we can directly compare the call-by-value and call-by-name translations
of source-language programs (closed expressions of type bool).

Corollary 4.8. Let M = (C,T) be a CBPV model that is adequate with respect to a program
relation ≼. If every morphism f : X → TY is lax discardable, lax copyable, and lax central,
then for every closed expression e : bool, we have

VLeM ≼ N LeM

Proof. By Theorem 4.7 we have VJeK ⋉ N JeK, so in particular VJeK RJboolK1 N JeK By
definition, the latter means VJeK ⊑ N JeK, which implies the result by adequacy.

The conclusion of this corollary, namely VLeM ≼ N LeM is independent of the choice of
model M. In contrast, the conclusion of Theorem 4.7 is not independent of M. Theorem 4.7
should therefore be viewed as a result about the denotations VJeK and N JeK, rather than
about the translations VLeM and N LeM. We rectify this in Section 6 below, where the
conclusion of our main result Theorem 6.2 relates VLeM with N LeM via the contextual
preorder, which is independent of M.

4.1. Examples. To conclude this section, we discuss the consequences of the results above
for each of our examples.

We first note that we can in fact simplify the definition of ⋉ for each of these examples,
by using the fact that, in each of the three Poset-categories Set, Poset, ωCpo, morphisms
are in particular functions, and are ordered pointwise. (We treat a set as a discrete poset
here.) It follows that instead of considering generalized elements f :W → X, it is enough to
consider ordinary elements t ∈ X (which we can identify with morphisms t : 1 → X). The
simplification of RJ−K we obtain is defined as follows.

13:28 D. McDermott and A. Mycroft Vol. 20:1

tv R′JτK tn (where tv ∈ T (VJτK) and tn ∈ UT(N JτK))

tv R′JunitK tn iff tv ⊑ tn

tv R′Jτ1 × τ2K tn iff Tπ1t
v R′Jτ1K π1tn ∧ Tπ2t

v R′Jτ2K π2tn

tv R′JboolK tn iff tv ⊑ tn

tv R′qτ → τ ′
y
tn iff ∀av, an. avR′JτKan ⇒ ev †(seqL(tv, av)) R′qτ ′

y
tnan

The precise relationship between RJ−K and R′J−K is as follows.

Lemma 4.9. For each of our four example models, we have

fv RJτKW fn ⇔ ∀w ∈W. fvw R′JτK fnw

for every fv :W → T (VJτK) and fn :W → UT(N JτK). Hence, for each gv : VJΓK → T (VJτK)
and gn : N JΓK → UT(N JτK), we have

gv ⋉ gn

exactly when, for all (avi ∈ T (VJτiK))i and (ani ∈ UT(N JτiK))i,

av1 R′Jτ1K an1 ∧ · · · ∧ avkR′JτkK ank ⇒ (gv†⟨⟨avi ⟩⟩i) R′qτ ′
y
(gn(ani)i)

where Γ = x1 : τ1, . . . , xk : τk.

Proof. By induction on τ . This is trivial for unit, bool and product types. For a function
type τ → τ ′, the (⇐) direction is again trivial. The (⇒) direction follows from the fact that,
identifying an element w ∈ W with a morphism w : 1 → W , we have R′JτK = RJτK1 and
R′Jτ ′K = RJτ ′K1 by the inductive hypothesis.

We now consider each of our examples in turn. Note that, since the proof of Theorem 4.7
is by induction on the expression e, we need to extend the proof with cases for the extra
syntax we add in these examples.

Corollary 4.10. For our no effects example, we have

VJeK ⋉ N JeK

for every Γ ⊢ e : τ , and in particular,

∃V :bool. (VLe′M ⇓ returnV) ∧ (N Le′M ⇓ returnV)

for every closed expression e′ : bool.

Proof. This is immediate from Theorem 4.7 and Corollary 4.8, with (≼) = (≼pure).

Corollary 4.11. For our divergence example, we have

VJeK ⋉ N JeK

for every Γ ⊢ e : τ , and in particular,

∀V :bool. (VLe′M ⇓ returnV) ⇒ (N Le′M ⇓ returnV)

for every closed expression e′ : bool.

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:29

Proof. We first extend the inductive proof of Theorem 4.7 with a case for recursive functions
rec f :τ → τ ′. λx. e. In light of Lemma 4.9 above, it suffices for this to show that, if

hv : V
q
τ → τ ′

y
× VJτK → T (V

q
τ ′

y
) hn : UT(N

q
τ → τ ′

y
)× UT(N JτK) → UT(N

q
τ ′

y
)

are ω-continuous functions that satisfy

tv R′qτ → τ ′
y
tn ∧ av R′JτK an ⇒ hv(tv, av) R′qτ ′

y
hn(tn, an)

when tv, av ̸= ⊥, then we have

fix (λgv. hv(gv,−)) R′qτ → τ ′
y

fix (λgn. hn(gn,−))

This follows from the fact that each R′Jτ ′′K relates ⊥ to ⊥ and is closed under least upper
bounds of ω-chains, which can be proved by a simple induction on τ ′′.

The second part follows from Corollary 4.8, by adequacy of the model with respect to
the program relation defined in Example 2.3.

Corollary 4.12. For our nondeterminism example, we have

VJeK ⋉ N JeK

for every Γ ⊢ e : τ , and in particular,

∀V :bool. (VLe′M ⇓ returnV) ⇒ (N Le′M ⇓ returnV)

for every closed expression e′ : bool.

Proof. We first extend the inductive proof of Theorem 4.7 with two extra cases: one for fail
and one for or. Following Lemma 4.9 above, to prove both of these cases, it suffices to show
that R′JτK is closed under finite joins for each τ ′, i.e. that

⊥R′qτ ′
y
⊥ tv1 R′qτ ′

y
tn1 ∧ tv2 R′qτ ′

y
tn2 ⇒ (tv1 ⊔ tv2)R′qτ ′

y
(tn1 ⊔ tn2)

This is a simple induction on τ ′. The result follows from Theorem 4.7 and Corollary 4.8, by
adequacy of the model with respect to the program relation defined in Example 2.4.

Corollary 4.13. For our immutable state example, we have

VJeK ⋉ N JeK

for every Γ ⊢ e : τ , and in particular,

∀b ∈ {true, false}. ∃V :bool. (VLe′M ⇓b returnV) ∧ (N Le′M ⇓b returnV)

for every closed expression e′ : bool.

Proof. Once again, we need to add the extra case to Theorem 4.7. It is enough to show that
(get ◦ ⟨⟩VJΓK ◦ ⟨⟨fvi ⟩⟩i) R′JboolK (get ◦ ⟨⟩W), which follows from lax discardability. We can
then apply Theorem 4.7 and Corollary 4.8 to obtain the result, using adequacy with respect
to the program relation defined in Example 2.5.

13:30 D. McDermott and A. Mycroft Vol. 20:1

5. A Galois connection between call-by-value and call-by-name

We improve on the results of the previous section by showing how to directly relate the
call-by-value semantics VJeK of an expression to a morphism derived from the call-by-name
semantics N JeK. Under a further condition on the model (which again restricts the allowable
effects), we prove a statement (Theorem 5.10) of the form

VJeK ⊑ ψτ ◦ N JeK ◦ ϕ̂Γ
involving morphisms ϕτ and ψτ for mapping between the call-by-value and call-by-name
semantics:

T (VJτK) UT(N JτK)
ϕτ

ψτ

(In the inequality above, ϕ̂Γ : VJΓK → N JΓK is constructed by extending the morphisms
(ϕτ ◦ η) : VJτK → UT(N JτK) from types to contexts.)

We do not want just any maps between call-by-value and call-by-name. We show
(Corollary 5.9) that the maps we define (precisely, the monotone functions ϕτ ◦ (−) and
ψτ ◦ (−)) form Galois connections [MSS86]. This is the crucial property that enables us to
prove the inequality above.5

Definition 5.1. A Galois connection consists of two posets X, Y and two monotone
functions ϕ : X → Y , ψ : Y → X, such that x ⊑ ψ(ϕ x) for all x ∈ X and ϕ(ψ y) ⊑ y for all
y ∈ Y .

The results of the previous section are helpful here. We have relations RJτK that in
some sense capture the relationship between call-by-value and call-by-name. This suggests
we should look for morphisms ϕτ and ψτ that represent the relations RJτK, i.e. that satisfy
the following equivalences.

ϕτ ◦ fv ⊑ fn ⇔ fv RJτKW fn ⇔ fv ⊑ ψτ ◦ fn

These equivalences uniquely determine ψτ and ϕτ , and guarantee that we have Galois
connections (ψτ ◦ (−), ϕτ ◦ (−)). Furthermore, these equivalences enable us to prove

VJeK ⊑ ψτ ◦ N JeK ◦ ϕ̂Γ
as a corollary of VJeK ⋉ N JeK. That is, the main result of this section (Theorem 5.10) is a
corollary of the main result of the previous section (Theorem 4.7).

Given a CBPV model M = (C,T), the morphisms ϕτ and ψτ are defined in Figure 7.6

As for the relations RJτK, the definition is by induction on τ . This is mutual induction: at
contravariant positions, the definition of ϕ uses ψ, and vice-versa.

Of course we do not expect to be able to prove the properties outlined above for a
general model M. To see what conditions we should require M to satisfy, suppose that we
do have Galois connections (ϕτ ◦ (−), ψτ ◦ (−)), equivalently, that we have

ϕτ ◦ ψτ ⊑ idUT(N JτK) idT (VJτK) ⊑ ψτ ◦ ϕτ

5The proof of Theorem 5.10 that we give here does not directly use the fact that the maps are Galois
connections; instead, it uses Theorem 4.7. This is simply to avoid another induction on expressions. In the
conference version of this paper, the corresponding fact [MM22, Lemma 20] was proved directly using the
fact that the maps are Galois connections.

6We present the definitions in a different way to [MM22], but the morphisms are in fact the same. The
syntactic maps in Figure 8 below are similarly presented differently to [MM22].

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:31

ϕτ : T (VJτK) → UT(N JτK)

ϕunit = id1 : T1 → T1

ϕτ1×τ2 = ⟨ϕτ1 ◦ Tπ1, ϕτ2 ◦ Tπ2⟩ : T (VJτ1K × VJτ2K) → UT(N Jτ1K)× UT(N Jτ2K)
ϕbool = id2 : T2 → T2

ϕτ→τ ′ = Λ(ϕτ ′ ◦ ev † ◦ ⟨⟨π1, ψτ ◦ π2⟩⟩) : T (VJτK ⇒ T (V
q
τ ′

y
)) → UT(N JτK) ⇒ UT(N

q
τ ′

y
)

ψτ : UT(N JτK) → T (VJτK)

ψunit = idT1 : T1 → T1

ψτ1×τ2 = ⟨⟨ψτ1 ◦ π1, ψτ2 ◦ π2⟩⟩ : UT(N Jτ1K)× UT(N Jτ2K) → T (VJτ1K × VJτ2K)
ψbool = idT2 : T2 → T2

ψτ→τ ′ = ηVJτ→τ ′K ◦ (Λ(ψτ ′ ◦ ev ◦ (id × (ϕτ ◦ η))))
: UT(N JτK) ⇒ UT(N

q
τ ′

y
) → T (VJτK ⇒ T (V

q
τ ′

y
))

Figure 7. Semantic morphisms ϕ from call-by-value to call-by-name and ψ
from call-by-name to call-by-value

Now consider what happens when we convert a lazy pair N = λ{1. N1, 2. N2} of type
N Lunit× unitM = Funit× Funit into call-by-value, and then back into call-by-name:

t
λ{1. N1 to z1. N2 to z2. return z1,

2. N1 to z1. N2 to z2. return z2}

|

= (ϕunit×unit ◦ ψunit×unit ◦ JNK) ⊑ JNK

The ith projection of the left-hand side evaluates both N1 and N2, but the ith projection of
the right is just JNiK. Thus moving from left to right discards effects. Similarly, converting
a strict pair M of type F(VLunit× unitM) = F(unit × unit) to call-by-name and back
duplicates the effects of M :

JMK ⊑ (ψunit×unit ◦ ϕunit×unit ◦ JMK) =

u

w
v

M to z .match z with (z1, z2).

M to z′.match z′ with (z′1, z
′
2).

return (z1, z
′
2)

}

�
~

These suggest that lax discardability and lax copyability will be useful, and indeed we use
both of these properties in the proof of Lemma 5.8 below.

For function types we need even more. Consider what happens when we convert a
CBPV computation M : F(VLunit → unitM) = F(U(unit → Funit)) to call-by-name and
then back to call-by-value. By doing this we obtain the denotation of a computation that
immediately returns:

JMK ⊑ (ψunit→unit ◦ ϕunit→unit ◦ JMK) = Jreturn thunkλx :unit.M to z. x ‘ force zK

The round-trip from call-by-value to call-by-name and back thunks the computational effects
of M , suspending them until the function is applied. The property we ask for the model to
satisfy in order to make this a valid inequality is lax thunkability of morphisms.

13:32 D. McDermott and A. Mycroft Vol. 20:1

Definition 5.2. Let T be a strong Poset-monad on a cartesian Poset-category C. A
morphism f : X → TY is lax thunkable if TηY ◦f ⊑ ηTY ◦f . If every such f is lax thunkable
(equivalently, if TηY ⊑ ηTY for every Y ∈ |C|), then we say that T is lax idempotent.7

Again this a lax version of a property defined by Führmann [Füh99]. For the corre-
sponding property in the syntax of CBPV we have the following.

Lemma 5.3. Let Γ ⊢cM : FA be a computation. For every adequate CBPV model, if JMK
is lax thunkable, then

M to x. return thunk returnx ≼Γ
ctx return thunkM

Proof. We have

JM to x. return thunk returnxK = TηJAK ◦ JMK
⊑ ηT JAK ◦ JMK
= Jreturn thunkMK

which implies the result by adequacy.

Example 5.4. For three of our examples the strong Poset-monad T is lax idempotent. For
no effects, we use the identity monad, which is trivially lax idempotent because TηY = idY =
ηTY . For divergence, the monad (Example 3.9) is lax idempotent because the left hand side
of TηY t ⊑ ηTY t is ⊥ when t = ⊥ (intuitively, we can thunk diverging computations), and
otherwise the two sides are equal. For nondeterminism the monad (Example 3.9) is lax
idempotent because, since ↓{y} ⊆ S for every y ∈ S ∈ TY , we have

TηY S = ↓{↓{y} | y ∈ S} ⊆ ↓{S} = ηTY S

(intuitively, we can postpone nondeterministic choices).
On the other hand, the reader monad we use for immutable state (Example 3.11) is

not lax idempotent. Indeed, a morphism f : X → 2 ⇒ Y is lax thunkable exactly when
it satisfies f x true = f x false for all x ∈ X. In particular, JgetK is not lax thunkable.
As a consequence, we cannot apply the results of this section to this model. (In fact,
Proposition 5.11 below implies that the conclusion of Theorem 5.10 is false in this case.)
This does not mean that our reasoning principle (Theorem 6.2) does not apply to immutable
state, only that this model is not good enough to instantiate it. Indeed, it is known that
this model of immutable state fails to be fully abstract, i.e. that it distinguishes between
computations that are contextually equivalent [KKS22]. A different model, such as the
identity monad on Set×Set, which is lax idempotent, may enable us to apply Theorem 6.2.

Lax thunkability is difficult to use directly in proofs, so we establish the following
characterizations of lax thunkable morphisms.

Lemma 5.5. Let T be a strong Poset-monad and f : X → TY be a morphism. The
following are equivalent:

(1) f is lax thunkable;
(2) the implication

g1 ⊑ (g2 ◦ (idW × ηY))
‡W×□

⇒ g1 ◦ (idW × f) ⊑ g2 ◦ (idW × f)

holds for all T-algebras Z and morphisms g1, g2 :W × TY → Z;

7Lax idempotent Poset-monads are a special case of lax idempotent 2-monads, which are well-known,
and are often called Kock-Zöberlein monads [Koc95].

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:33

(3) the implication

g1 ⊑ (g2 ◦ (ηY × idW))‡
□×W

⇒ g1 ◦ (f × idW) ⊑ g2 ◦ (f × idW)

holds for all T-algebras Z and morphisms g1, g2 : TY ×W → Z;
(4) the implication

g1 ⊑ (g2 ◦ ηY)‡ ⇒ g1 ◦ f ⊑ g2 ◦ f

holds for all T-algebras Z and morphisms g1, g2 : TY → Z.

Proof. (1) ⇒ (2): If g1 ⊑ (g2 ◦ (idW × ηY))
‡W×□

then

g1 ◦ (idW × f) ⊑ (g2 ◦ (idW × ηY))
‡W×□

◦ (idW × f) (assumption)

= g2
‡W×□ ◦ (idW × TηY) ◦ (idW × f) (naturality of extension)

⊑ g2
‡W×□ ◦ (idW × ηTY) ◦ (idW × f) (lax thunkability of f)

= g2 ◦ (idW × f) (left unit law)

(2) ⇒ (4): Specializing (2) to W = 1 yields (4).
(4) ⇒ (1): Consider the T-algebra Z = FT(TY) and morphisms g1 = TηY and g2 = ηTY .

We have g1 = TηY = (ηTY ◦ ηY)† = (g2 ◦ ηY)† by the definition of T on morphisms, so (3)
gives us the required inequality g1 ◦ f ⊑ g2 ◦ f .

(1) ⇒ (3): Similar to the proof that (1) implies (2).
(3) ⇒ (4): Similar to the proof that (2) implies (4).

Lax thunkability is a strong property. In particular, it implies all of the properties we
assumed in the previous section. (The non-lax version of this fact is noted by Führmann in
[Füh99].)

Lemma 5.6. Let T be a strong Poset-monad. If f : X → TY is lax thunkable, then f is
also lax discardable, lax copyable, and lax central.

Proof. Lax discardability: By the definition of T on morphisms, we have

T ⟨⟩Y = (η1 ◦ ⟨⟩Y)† = ((η1 ◦ ⟨⟩TY) ◦ ηY)†

so Lemma 5.5(4) implies

T ⟨⟩Y ◦ f ⊑ (η1 ◦ ⟨⟩TY) ◦ f = η1 ◦ ⟨⟩X

Lax copyability: By the definition of T on morphisms, and the left unit law for T, we
have

T ⟨idY , idY ⟩ = (ηY×Y ◦ ⟨idY , idY ⟩)† = (seqLY,Y ◦ ⟨ηY , ηY ⟩)
†
= ((seqLY,Y ◦ ⟨idY , idY ⟩) ◦ ηY)

†

so Lemma 5.5(4) implies

T ⟨idY , idY ⟩ ◦ f ⊑ (seqLY,Y ◦ ⟨idY , idY ⟩) ◦ f = seqLY,Y ◦ ⟨f, f⟩

13:34 D. McDermott and A. Mycroft Vol. 20:1

Lax centrality: We have

seqLY,W = (ηY×W
†Y ×□

)
†□×TW

(definition of seqL)

= ((ηY×W
†□×W ◦ (ηY × idW))

†Y ×□

)
†□×TW

(left unit law)

= ((ηY×W
†□×W

)
†TY ×□

◦ (ηY × idTW))
†□×TW

(naturality of extension)

= (seqRY,W ◦ (ηY × idTW))
†□×TW

(definition of seqR)

so Lemma 5.5(3) implies

seqLY,W ◦ (f × idTW) ⊑ seqRY,W ◦ (f × idTW)

Our aim is now to establish the relationship between RJτK and (ϕτ , ψτ) outlined at
the beginning of this section. For τ = unit and τ = bool this turns out to be easy. For
product types, we use lax discardablity and lax copyability, while for function types, we use
lax thunkability. For the latter two cases the following lemma is useful.

Lemma 5.7. Let T be a strong Poset-monad.

(1) If f :W → T (X1 ×X2) is lax copyable, and both g1 :W → TX1 and g2 :W → TX2 are
lax discardable, then

f ⊑ ⟨⟨g1, g2⟩⟩ ⇔ Tπ1 ◦ f ⊑ g1 ∧ Tπ2 ◦ f ⊑ g2

(2) If f : W → T (X ⇒ Z) is lax thunkable, where Z is a T-algebra, then for every
g :W ×X → Z, we have

f ⊑ ηX⇒Z ◦ Λg ⇔ ev ‡
□×X ◦ (f × idX) ⊑ g

Proof. (1) For the (⇒) direction, we have

Tπi ◦ f ⊑ Tπi ◦ ⟨⟨g1, g2⟩⟩ (assumption)

⊑ gi (Lemma 4.6(1))

for each i ∈ {1, 2}. For the (⇐) direction, we have

f = T (π1 × π2) ◦ T ⟨id , id⟩ ◦ f
⊑ T (π1 × π2) ◦ seqL ◦ ⟨f, f⟩ (lax copyability)

= ⟨⟨Tπ1 ◦ f, Tπ2 ◦ f⟩⟩ (naturality of extension)

⊑ ⟨⟨g1, g2⟩⟩ (assumption)

(2) For the (⇒) direction, we have

ev ‡
□×X ◦ (f × idX) ⊑ ev ‡

□×X ◦ ((ηX⇒Z ◦ Λg)× idX) (assumption)

= ev ◦ (Λg × idX) (left unit law)

= g

For the (⇐) direction, we note that

ηX⇒Z ◦ Λ(ev ‡□×X
) ◦ f = ηX⇒Z ◦ Λ(ev ‡□×X ◦ (f × idX))

⊑ ηX⇒Z ◦ Λg (assumption)

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:35

so it suffices to show f ⊑ ηX⇒Z ◦ Λ(ev ‡
□×X

) ◦ f . Since f is lax thunkable, this is a
consequence of Lemma 5.5(4) applied to the following.

idT (X⇒Z) = ηX⇒Z
† (right unit law)

= (ηX⇒Z ◦ Λev)†

= (ηX⇒Z ◦ Λ(ev ‡□×X ◦ (ηX⇒Z × idX)))
†

(left unit law)

= (ηX⇒Z ◦ Λ(ev ‡□×X
) ◦ ηX⇒Z)

†

We can now relate RJτK to the morphisms ϕτ and ψτ , as follows.

Lemma 5.8. Let M = (C,T) be a CBPV model for which T is lax idempotent. For every
type τ , object W ∈ |C|, and pair of morphisms

fv :W → T (VJτK) fn :W → UT(N JτK)

we have the following equivalences.

ϕτ ◦ fv ⊑ fn ⇔ fv RJτKW fn ⇔ fv ⊑ ψτ ◦ fn

Proof. By induction on the type τ .

• The unit case is trivial.
• For a product type τ1 × τ2, we have that fv RJτ1 × τ2K fn is equivalent, by expanding out
the definition and applying the inductive hypothesis, to each of the following properties.

∀i ∈ {1, 2}. ϕτi ◦ Tπi ◦ fv ⊑ πi ◦ fn ∀i ∈ {1, 2}. Tπi ◦ fv ⊑ ψτi ◦ πi ◦ fn

It therefore suffices to show that the left is equivalent to ϕτ1×τ2 ◦ fv ⊑ fn, and that the
right is equivalent to fv ⊑ ψτ1×τ2 ◦ fn. For the left, the inequality ϕτ1×τ2 ◦ fv ⊑ fn holds
exactly when πi ◦ ϕτ1×τ2 ◦ fv ⊑ πi ◦ fn holds for all i ∈ {1, 2}. The required equivalence
therefore follows from

πi ◦ ϕτ1×τ2 ◦ fv = Tπi ◦ ϕτi ◦ fv

which is immediate from the definition of ϕτ1×τ2 . For the right, it is enough to apply
Lemma 5.7(1) to the inequality fv ⊑ ψτ1×τ2 ◦ fn. We can do this because T is lax
idempotent, which implies lax discardability and lax copyability by Lemma 5.6.

• The bool case is trivial.
• For a function type τ → τ ′, we consider the two equivalences separately.

For the equivalence on the left, we have

ϕτ→τ ′ ◦ fv ⊑ fn ⇔ Λ−1(ϕτ→τ ′ ◦ fv) ⊑ Λ−1fn

⇔ ϕτ ′ ◦ ev † ◦ ⟨⟨fv ◦ π1, ψτ ◦ π2⟩⟩ ⊑ ev ◦ (fn × id)

⇔ (ev † ◦ ⟨⟨fv ◦ π1, ψτ ◦ π2⟩⟩) R
q
τ ′

y
W×UT(N JτK) (ev ◦ (fn × id))

where the second step uses the definition of ϕτ→τ ′ , and the final step uses the inductive hy-
pothesis. Call the instance of RJτ ′KW×UT(N JτK) above (∗). To show that fv RJτ → τ ′KW fn

follows from (∗), consider arbitrary w :W ′ →W and gv, gn such that gv RJτKW ′ gn. By
Lemma 4.5(2), we can precompose both sides of (∗) with ⟨w, gn⟩ to obtain

(ev † ◦ ⟨⟨fv ◦ w,ψτ ◦ gn⟩⟩) R
q
τ ′

y
W ′ (ev ◦ ⟨fn ◦ w, gn⟩)

The inductive hypothesis implies gv ⊑ ψτ ◦ gn, so by Lemma 4.5(1) it follows that

(ev † ◦ ⟨⟨fv ◦ w, gv⟩⟩) R
q
τ ′

y
W ′ (ev ◦ ⟨fn ◦ w, gn⟩)

13:36 D. McDermott and A. Mycroft Vol. 20:1

as required. Conversely, fv RJτ → τ ′KW fn implies (∗) by taking

W ′ =W × UT(N JτK) w = π1 :W
′ →W gv = ψτ ◦ π2 gn = π2

and noting that ψτ ◦π2 ⊑ ψτ ◦π2 implies (ψτ ◦π2) RJτKW ′ π2 by the inductive hypothesis.
For the remaining equivalence, we have

fv ⊑ ψτ→τ ′ ◦ fn ⇔ ev †
□×VJτK ◦ (fv × id) ⊑ ψτ ′ ◦ ev ◦ (fn × (ϕτ ◦ η))

⇔ (ev †
□×VJτK ◦ (fv × id)) R

q
τ ′

y
W×VJτK (ev ◦ (fn × (ϕτ ◦ η)))

where the first step uses Lemma 5.7(2) and the second uses the inductive hypothesis. Call
the instance of RJτ ′KW×VJτK above (∗∗). To show that (∗∗) implies fv RJτ → τ ′KW fn,

consider arbitrary w :W ′ →W and gv, gn such that gv RJτKW ′ gn. By Lemma 4.5(2,3),
we have

(ev †
□×VJτK ◦ (fv × id))

†W×□

◦ ⟨w, gv⟩ R
q
τ ′

y
W ′ (ev ◦ (fn × (ϕτ ◦ η)))‡

W×□
◦ ⟨w, gv⟩

Lax idempotence of T implies lax centrality by Lemma 5.6, so we have

(ev †
□×VJτK ◦ (fv × id))

†W×□

◦ ⟨w, gv⟩

= (ev †
□×VJτK

)
†T (VJτ→τ ′K)×□

◦ ⟨fv ◦ w, gv⟩ (naturality of extension)

= (ev †
VJτ→τ ′K×□

)
†□×T (VJτK)

◦ ⟨fv ◦ w, gv⟩ (Lemma 4.6(2))

= ev † ◦ ⟨⟨fv ◦ w, gv⟩⟩ (left unit, associativity)

Since gv RJτKW ′ gn, we also have

(ev ◦ (fn × (ϕτ ◦ η)))‡
W×□

◦ ⟨w, gv⟩ ⊑ (ev ◦ (fn × ϕτ)) ◦ ⟨w, gv⟩ (Lemma 5.5(2))

= ev ◦ ⟨fn ◦ w, ϕτ ◦ gv⟩
⊑ ev ◦ ⟨fn ◦ w, gn⟩ (inductive hypothesis)

where we again use the fact that T is lax idempotent. It follows by Lemma 4.5(1) that

(ev † ◦ ⟨⟨fv ◦ w, gv⟩⟩) R
q
τ ′

y
W ′ (ev ◦ ⟨fn ◦ w, gn⟩)

as required. Finally, to show that fv RJτ → τ ′KW fn implies (∗∗), we take

W ′ =W × VJτK w = π1 gv = η ◦ π2 gn = ϕτ ◦ η ◦ π2
noting that the inductive hypothesis implies (η ◦ π2) RJτKW ′ (ϕτ ◦ η ◦ π2). From this we
obtain

(ev † ◦ ⟨⟨fv ◦ π1, η ◦ π2⟩⟩) R
q
τ ′

y
W×VJτK (ev ◦ (fn × (ϕτ ◦ η)))

which simplifies to (∗∗) by the left unit law.

An immediate corollary is that, as claimed above, the maps between call-by-value and
call-by-name form Galois connections.

Corollary 5.9. Let M = (C,T) be a CBPV model such that T is lax idempotent. The
monotone functions

C(W,T (VJτK)) C(W,UT(N JτK))
ϕτ◦(−)

ψτ◦(−)

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:37

form a Galois connection for every source-language type τ and object W ∈ |C|.

Proof. Immediate from Lemma 5.8.

Another corollary of Lemma 5.8 is the following, which is the main result of this section.
We use this result in the following section to establish our reasoning principle. To state it,
we use morphisms ϕ̂Γ for converting a call-by-value context into a call-by-name context,
defined by

ϕ̂Γ = ⟨ϕτi ◦ ηVJτiK ◦ πxi⟩i : VJΓK → N JΓK
where Γ = x1 : τ1, . . . , xk : τk.

Theorem 5.10. Let M = (C,T) be a CBPV model such that T is lax idempotent. For all
source-language expressions Γ ⊢ e : τ we have

VJeK ⊑ ψτ ◦ N JeK ◦ ϕ̂Γ

Proof. The inequality we need to establish is equivalently

VJeK ⊑ ψτ ◦ N JeK ◦ ⟨ϕτi ◦ ηVJτiK ◦ πxi⟩i
where Γ = x1 : τ1, . . . , xk : τk. By Lemma 5.8 we have

(ηVJτiK ◦ πxi) RJτiKVJΓK (ϕτi ◦ ηVJτiK ◦ πxi)

for each i. We invoke Theorem 4.7 (using Lemma 5.6 to show lax discardability, lax
copyability and lax centrality), to obtain

(VJeK† ◦ ⟨⟨ηVJτiK ◦ πxi⟩⟩i) RJτKVJΓK (N JeK ◦ ⟨ϕτi ◦ ηVJτiK ◦ πxi⟩i)

The left-hand side is equal to VJeK by the left unit law of T, so Lemma 5.8 implies the
required inequality.

This theorem has a partial converse, as follows.

Proposition 5.11. Let M = (C,T) be an arbitrary CBPV model. If VJeK ⊑ ψτ ◦N JeK ◦ ϕ̂Γ
for every Γ ⊢ e : τ , then for each object X ∈ {1, 2} we have TηX ⊑ ηTX , and every morphism
Y → TX is lax thunkable.

Proof. The first step is to show that id ⊑ ψτ ◦ ϕτ for every τ , by applying the assumption
to the expression x : unit → τ ⊢ x () : τ . Indeed, we have

ev = VJx ()K ⊑ ψτ ◦ N Jx ()K ◦ ϕ̂unit→τ = ψτ ◦ ϕτ ◦ ev

which implies id ⊑ ψτ ◦ ϕτ because ev : 1× (1 ⇒ T (VJτK)) → T (VJτK) is an isomorphism.
It follows for each τ ′ ∈ {unit,bool} that

idT (1⇒T (VJτ ′K)) ⊑ ψunit→τ ′ ◦ ϕunit→τ ′ = η1⇒T (VJτ ′K) ◦ id1⇒T (VJτ ′K)
‡

which implies

idT (T (VJτ ′K)) ⊑ ηT (VJτ ′K) ◦ idT (VJτ ′K)
†

Hence, by naturality of Kleisli extension and the right unit law, we have

TηVJτ ′K = idT (T (VJτ ′K)) ◦ TηVJτ ′K ⊑ ηT (VJτ ′K) ◦ idT (VJτ ′K)
† ◦ TηVJτ ′K = ηT (VJτ ′K)

as required.

13:38 D. McDermott and A. Mycroft Vol. 20:1

Γ ⊢cM : F(VLτ M) 7→ Γ ⊢c ΦτM : N Lτ M

ΦunitM = M

Φτ1×τ2M =
λ{1.M to x.match x with (z1, z2).Φτ1(return z1),

2.M to x.match x with (z1, z2).Φτ2(return z2)}
ΦboolM = M

Φτ→τ ′M = λx :U(N Lτ M).M to f. Ψτ (forcex) to y. Φτ ′(y ‘ force f)

Γ ⊢c N : N Lτ M 7→ Γ ⊢c ΨτN : F(VLτ M)

ΨunitN = N

Ψτ1×τ2N = Ψτ1(1‘N) to z1.Ψτ2(2‘N) to z2. return (z1, z2)

ΨboolN = N

Ψτ→τ ′N = return thunkλx :VLτ M.Ψτ ′
(
(thunk (Φτ (returnx))) ‘N

)
Figure 8. Syntactic maps Φ from call-by-value to call-by-name and Ψ from
call-by-name to call-by-value

In particular, it follows from this proposition that lax discardability, lax copyability,
and lax centrality are not enough. Our immutable state example satisfies all three of those
properties, but the morphism JgetK : 1 → T2 is not lax thunkable, so we do not have

VJeK ⊑ ψτ ◦ N JeK ◦ ϕ̂Γ for every e.

6. The reasoning principle

We now use the Galois connections defined in the previous section to relate the call-by-value
and call-by-name translations of expressions, and arrive at our main reasoning principle.

Recall that the problem with comparing VLeM with N LeM directly is that they have
different types. We render the Galois connections defined in the previous section in the
syntax of CBPV, and then construct from N LeM a computation that we can directly compare
with VLeM:

VLeM ≼ctx Ψτ

(
N LeM[Φ̂Γ]

)
More precisely, we render ϕτ and ψτ in the syntax as maps Φτ from call-by-value

computations to call-by-name computations, and Ψτ from call-by-name to call-by-value.8

These are defined, again by induction on τ , in Figure 8. (We use some auxiliary variables in
the definition, which are assumed to be fresh.) We further define, for each source-language
context Γ = x1 : τ1, . . . , xk : τk, a substitution

Φ̂Γ = x1 7→ thunk
(
Φτ1(returnx1)

)
, . . . , xk 7→ thunk

(
Φτk(returnxk)

)
8We define Φ and Ψ directly as maps from computations to computations, but we could instead have

defined computations

x : U(F(VLτ M)) ⊢c Φ
′
τ : N Lτ M x : U(N Lτ M) ⊢c Ψ

′
τ : F(VLτ M)

and then recovered Φ and Ψ modulo βη-laws for thunks, by substitution. This definition is slightly less
convenient to work with however.

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:39

for converting a call-by-value context into a call-by-name context. This has the following
typing:

N LΓM ⊢c N : C 7→ VLΓM ⊢c Φ̂ΓN : C

The maps Φ, Ψ and Φ̂ are syntactic renderings of ϕ, ψ and ϕ̂ in the following sense.

Lemma 6.1. Given any model of CBPV, we have:

(1) JΦτMK = ϕτ ◦ JMK for all Γ ⊢cM : F(VLτ M);
(2) JΨτNK = ψτ ◦ JNK for all Γ ⊢c N : N Lτ M;
(3) JN [Φ̂Γ]K = JNK ◦ ϕ̂Γ for all N LΓM ⊢c N : C.

Proof. (1) and (2) are proved by mutual induction on the type τ , with each case being an
easy calculation. (3) then follows immediately from (1) together with the evident substitution
lemma for the denotational semantics of CBPV.

Given a source-language expression Γ ⊢ e : τ , the computation we obtain by composing
N LeM with the maps between call-by-value and call-by-name has the same type as VLeM:

VLΓM ⊢c Ψτ

(
N LeM[Φ̂Γ]

)
: F(VLτ M)

We can therefore compare VLeM with Ψτ (N LeM[Φ̂Γ]) directly. In particular, it makes sense to

replace VLeM with Ψτ (N LeM[Φ̂Γ]) within a CBPV computation, as outlined in the introduction.
Using the results of the previous section, we establish the following result for reasoning
about how replacing VLeM in this way changes the behaviour of a computation.

Recall that a program relation ≼ is a preorder on CBPV programs, and that each
program relation induces a contextual preorder ≼ctx. Given any program relation ≼, to
show that the call-by-value and call-by-name translations of source-language expressions are
related by ≼ctx it is enough to find an adequate model involving a lax idempotent T:

Theorem 6.2 (Relationship between call-by-value and call-by-name). Let M = (C,T) be
a CBPV model that is adequate with respect to a given a program relation ≼. If T is lax
idempotent, then for every source-language expression Γ ⊢ e : τ we have

VLeM ≼ctx Ψτ

(
N LeM[Φ̂Γ]

)
Proof. By adequacy it suffices to show JVLeMK ⊑ JΨτ (N LeM[Φ̂Γ])K, which, by Lemma 6.1, is

equivalently VJeK ⊑ ψτ ◦ N JeK ◦ ϕ̂Γ. The result therefore follows from Theorem 5.10.

The generality of this theorem comes from two sources. First, we consider arbitrary
program relations ≼. The only requirement on these is the existence of some adequate model
in which morphisms are lax thunkable. Second, this theorem applies to terms that are open
and have higher types, using the maps between the two evaluation orders (in contrast to
Corollary 4.8 above).

For our first three examples (no effects, divergence, and nondeterminism), the model is
adequate and has a lax idempotent T. Thus in each case the assumptions of our reasoning
principle are satisfied, establishing the claims stated informally at the beginning of the
introduction.

Remark 6.3. Given an adequate model in which T is lax idempotent, it follows from
Corollary 5.9 and Lemma 6.1 that the maps Φτ and Ψτ on terms form a Galois connection
(with respect to ≼ctx). In particular, we have

M ≼ctx Ψτ (ΦτM) Φτ (ΨτN) ≼ctx N

13:40 D. McDermott and A. Mycroft Vol. 20:1

Both of these inequalities are in general proper (they are not contextual equivalences). To
see this, consider our divergence example, for which the above inequalities hold. For each
C, let ΩC be the diverging computation recx :UC. forcex (which has type C). Then
if τ = bool → bool and M = ΩF(VLτ M), we do not have M ≽ctx Ψτ (ΦτM), because for
E = (□ to f. return false) the computation E [M] diverges but E [Ψτ (ΦτM)] ⇓ return false.
In this case we have Ψτ (ΦτM) ∼=ctx return thunkλx : bool.ΩFbool. For a counterexample
to Φτ (ΨτN) ≽ctx N , let τ = bool → bool and N = λx :U(Fbool). return true. Then for
E ′ = ((thunkΩFbool) ‘□), the computation E ′[Φτ (ΨτN)] diverges but E ′[N] ⇓ return true.
Here we have Φτ (ΨτN) ∼=ctx λx :U(Fbool). forcex to y. return true.

In particular, our maps between call-by-value and call-by-name are merely Galois
connections, and not sections or retractions. This contrasts with Reynolds [Rey74], who
obtains a retraction between direct and continuation semantics.

7. Related work

Comparing evaluation orders. Plotkin [Plo75] and many others (e.g. [IT16]) relate
call-by-value and call-by-name. Crucially, they consider λ-calculi with no effects other
than divergence. This makes a significant difference to the techniques that can be used,
in particular because in this case the equational theory for call-by-name is strictly weaker
than for call-by-value. This is not necessarily true for other effects. Other evaluation
orders (such as call-by-need) have also been compared in similarly restricted settings
[MOTW95, MM19, HH19]. We suspect our technique could also be adapted to these. Here
we use CBPV as a calculus in which to reason about both call-by-value and call-by-name,
but other calculi (e.g. the modal calculus of [ESPU22]) may be suitable for this purpose.

It might also be possible to recast some of our work in terms of the duality between
call-by-value and call-by-name [Fil89, CH00, Wad03, Sel01], In particular, this may shed
some light on our definitions of Φ and Ψ. It is not clear to us what the precise connection is
however. While Selinger [Sel01] defines translations between call-by-value and call-by-name
versions of Parigot’s λµ-calculus [Par92], these translations behave differently to ours, in
particular, they are semantics-preserving.

Relating semantics of languages. The technique we use here to relate call-by-value
and call-by-name is based on the idea used first by Reynolds [Rey74] to relate direct and
continuation semantics of the λ-calculus, and later used by others (e.g. [MW85, Kuč98, CF94,
Fil96]). Reynolds constructs a relation between the two semantics, and uses this to establish
a retraction between direct and continuation semantics, just as we construct a relation
between call-by-value and call-by-name and then use this to establish a Galois connection.
A minor difference is that Reynolds relies on continuations with a large-enough domain of
answers (e.g. a solution to a particular recursive domain equation). Our maps exist for any
choice of model. We are the first to use this technique to relate call-by-value and call-by-name.
There has been some work [SF92, LD93, SW96] on soundness and completeness properties of
translations (similar to the translations into CBPV), in particular using Galois connections
(and similar structures) for which the order is reduction of programs. Our results would fail
if we used reduction of programs directly, so we consider only the observable behaviour of
programs.

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:41

There are some similarities between our work and the work of New et al. [NL20, NLA21]
on gradual typing. In particular, [NLA21] has embedding-projection pairs (a special case of
Galois connections) for casting from a more dynamic type to a less dynamic type, and vice
versa. Their application is quite different however. The double category perspective used in
[NL20] may also be illuminating here.

8. Conclusions

In this paper, we give a general reasoning principle (Theorem 6.2) that relates the observable
behaviour of terms under call-by-value and call-by-name. The reasoning principle works for
various collections of computational effects, in particular, it enables us to obtain theorems
about divergence and nondeterminism. It is about open expressions, and enables us to
change evaluation order within programs.

The technique we use involves first relating the observable behaviour of the call-by-
value and call-by-name translations of expressions via a logical relation (Theorem 4.7). We
obtain a result about call-by-value and call-by-name evaluations of programs as a corollary
(Corollary 4.8). Applying this to divergence, we show that if the call-by-value execution
terminates with some result then the call-by-name execution terminates with the same result.
For nondeterminism, we show that all possible results of call-by-value executions are possible
results of call-by-name executions. There may be other collections of effects we can apply
our technique to, including combinations of divergence and nondeterminism.

We expect that our technique can be applied to other evaluation orders. Two evaluation
orders can be related by giving translations into some common language (here we use CBPV),
constructing maps between the two translations, and showing that (for some models) these
maps form Galois connections. A major advantage of the technique is that it allows us to
identify axiomatic properties of computational effects (thunkable, etc.) that give rise to
relationships between evaluation orders.

Acknowledgments

We thank the anonymous referees for helpful comments. The first author was supported by
an EPSRC studentship, and by Icelandic Research Fund grants 196323-053 and 228684-052.

References

[AS19] Andreas Abel and Christian Sattler. Normalization by evaluation for call-by-push-value and
polarized lambda calculus. In Proceedings of the 21st International Symposium on Principles
and Practice of Declarative Programming, pages 1–12, 2019.

[CF94] Robert Cartwright and Matthias Felleisen. Extensible denotational language specifications. In
Proceedings of the International Conference on Theoretical Aspects of Computer Software, pages
244–272. Springer, 1994. doi:10.1007/3-540-57887-0_99.

[CH00] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Programming, pages 233–243. ACM,
2000. doi:10.1145/351240.351262.

[DCL18] Marco Devesas Campos and Paul Blain Levy. A syntactic view of computational adequacy. In
Christel Baier and Ugo Dal Lago, editors, Foundations of Software Science and Computation
Structures, pages 71–87. Springer, 2018. doi:10.1007/978-3-319-89366-2_4.

https://doi.org/10.1007/3-540-57887-0_99
https://doi.org/10.1145/351240.351262
https://doi.org/10.1007/978-3-319-89366-2_4

13:42 D. McDermott and A. Mycroft Vol. 20:1

[ESPU22] José Esṕırito Santo, Lúıs Pinto, and Tarmo Uustalu. Plotkin’s call-by-value λ-calculus as a
modal calculus. Journal of Logical and Algebraic Methods in Programming, 2022. doi:10.1016/
j.jlamp.2022.100775.

[Fil89] Andrzej Filinski. Declarative continuations and categorical duality. Master’s thesis, University of
Copenhagen, 1989.

[Fil96] Andrzej Filinski. Controlling effects. PhD thesis, Carnegie Mellon University, 1996.
[FS99] Marcelo Fiore and Alex Simpson. Lambda definability with sums via grothendieck logical

relations. In International Conference on Typed Lambda Calculi and Applications, pages 147–161.
Springer, 1999.

[Füh99] Carsten Führmann. Direct models of the computational lambda-calculus. Electronic Notes in
Theoretical Computer Science, 20:245–292, 1999. doi:10.1016/S1571-0661(04)80078-1.

[HH19] Jennifer Hackett and Graham Hutton. Call-by-need is clairvoyant call-by-value. Proc. ACM
Program. Lang., 3(ICFP):114:1–114:23, 2019. doi:10.1145/3341718.

[IT16] Jun Inoue and Walid Taha. Reasoning about multi-stage programs. Journal of Functional
Programming, 26(e22), 2016. doi:10.1017/S0956796816000253.

[JT93] Achim Jung and Jerzy Tiuryn. A new characterization of lambda definability. In Proceedings of
the International Conference on Typed Lambda Calculi and Applications, pages 245–257. Springer,
1993. doi:10.1007/BFb0037110.

[Kat08] Shin-ya Katsumata. A characterisation of lambda definability with sums via ⊤⊤-closure operators.
In Computer Science Logic: 22nd International Workshop, CSL 2008, 17th Annual Conference
of the EACSL, Bertinoro, Italy, September 16-19, 2008. Proceedings 22, pages 278–292. Springer,
2008.

[KKS22] Ohad Kammar, Shin-ya Katsumata, and Philip Saville. Fully abstract models for effectful
λ-calculi via category-theoretic logical relations. Proceedings of the ACM on Programming
Languages, 6(POPL):1–28, 2022. doi:10.1145/3498705.

[Koc95] Anders Kock. Monads for which structures are adjoint to units. Journal of Pure and Applied
Algebra, 104(1):41–59, 1995. doi:10.1016/0022-4049(94)00111-U.

[Kuč98] Jakov Kučan. Retraction approach to CPS transform. Higher Order Symbol. Comput., 11(2):145–
175, 1998. doi:10.1023/A:1010012532463.

[LD93] Julia L. Lawall and Olivier Danvy. Separating stages in the continuation-passing style trans-
formation. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 124–136. ACM, 1993. doi:10.1145/158511.158613.

[Lev99] Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Jean-Yves Girard, editor, Typed
Lambda Calculi and Applications, pages 228–243. Springer, 1999. doi:10.1007/3-540-48959-2_
17.

[Lev03] Paul Blain Levy. Adjunction models for call-by-push-value with stacks. Electronic Notes in
Theoretical Computer Science, 69:248–271, 2003. CTCS’02, Category Theory and Computer
Science. doi:10.1016/S1571-0661(04)80568-1.

[Lev06] Paul Blain Levy. Call-by-push-value: Decomposing call-by-value and call-by-name. Higher-Order
and Symbolic Computation, 19(4):377–414, 2006. doi:10.1007/s10990-006-0480-6.

[MM19] Dylan McDermott and Alan Mycroft. Extended call-by-push-value: Reasoning about effectful
programs and evaluation order. In Lúıs Caires, editor, Programming Languages and Systems,
pages 235–262. Springer, 2019. doi:10.1007/978-3-030-17184-1_9.

[MM22] Dylan McDermott and Alan Mycroft. Galois connecting call-by-value and call-by-name. In
Amy P. Felty, editor, 7th International Conference on Formal Structures for Computation and
Deduction (FSCD 2022), volume 228 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 32:1–32:19, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.FSCD.2022.32.

[Mog91] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991. doi:
10.1016/0890-5401(91)90052-4.

[MOTW95] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-name, call-by-
value, call-by-need, and the linear lambda calculus. In Proceedings of the Eleventh Annual
Mathematical Foundations of Programming Semantics Conference, pages 370–392, 1995. doi:
10.1016/S1571-0661(04)00022-2.

https://doi.org/10.1016/j.jlamp.2022.100775
https://doi.org/10.1016/j.jlamp.2022.100775
https://doi.org/10.1016/S1571-0661(04)80078-1
https://doi.org/10.1145/3341718
https://doi.org/10.1017/S0956796816000253
https://doi.org/10.1007/BFb0037110
https://doi.org/10.1145/3498705
https://doi.org/10.1016/0022-4049(94)00111-U
https://doi.org/10.1023/A:1010012532463
https://doi.org/10.1145/158511.158613
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1016/S1571-0661(04)80568-1
https://doi.org/10.1007/s10990-006-0480-6
https://doi.org/10.1007/978-3-030-17184-1_9
https://doi.org/10.4230/LIPIcs.FSCD.2022.32
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/S1571-0661(04)00022-2
https://doi.org/10.1016/S1571-0661(04)00022-2

Vol. 20:1 GALOIS CONNECTING CALL-BY-VALUE AND CALL-BY-NAME 13:43

[MSS86] Austin Melton, David A. Schmidt, and George E. Strecker. Galois connections and computer
science applications. In Category Theory and Computer Programming, pages 299–312. Springer,
1986. doi:10.1007/3-540-17162-2_130.

[MU22] Dylan McDermott and Tarmo Uustalu. What makes a strong monad? In Proceedings Ninth
Workshop on Mathematically Structured Functional Programming (to appear). Open Publishing
Association, 2022.

[MW85] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed lambda-calculi. In Rohit
Parikh, editor, Logics of Programs, pages 219–224. Springer, 1985. doi:10.1007/3-540-15648-8_
17.

[NL20] Max S. New and Daniel R. Licata. Call-by-name gradual type theory. Logical Methods in
Computer Science, 16, 2020. doi:10.23638/LMCS-16(1:7)2020.

[NLA21] Max S. New, Daniel R. Licata, and Amal Ahmed. Gradual type theory. Journal of Functional
Programming, 31, 2021. doi:10.1017/S0956796821000125.

[Par92] Michel Parigot. λµ-calculus: An algorithmic interpretation of classical natural deduction. In
Andrei Voronkov, editor, Logic Programming and Automated Reasoning, pages 190–201. Springer,
1992. doi:10.1007/BFb0013061.

[Plo75] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science,
1(2):125–159, 1975. doi:10.1016/0304-3975(75)90017-1.

[Rey74] John C. Reynolds. On the relation between direct and continuation semantics. In Proceedings of
the 2nd Colloquium on Automata, Languages and Programming, pages 141–156. Springer, 1974.
doi:10.1007/978-3-662-21545-6_10.

[Sel01] Peter Selinger. Control categories and duality: on the categorical semantics of the lambda-mu
calculus. Mathematical Structures in Computer Science, 11(2):207–260, 2001. doi:10.1017/
S096012950000311X.

[SF92] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style. In
Proceedings of the 1992 ACM Conference on LISP and Functional Programming, pages 288–298.
ACM, 1992. doi:10.1145/141471.141563.

[SW96] Amr Sabry and Philip Wadler. A reflection on call-by-value. In Proceedings of the First ACM
SIGPLAN International Conference on Functional Programming, pages 13–24. ACM, 1996.
doi:10.1145/232627.232631.

[Wad03] Philip Wadler. Call-by-value is dual to call-by-name. In Proceedings of the Eighth ACM SIGPLAN
International Conference on Functional Programming, pages 189–201. ACM, 2003. doi:10.1145/
944705.944723.

[Win93] Glynn Winskel. The formal semantics of programming languages: An introduction. MIT Press,
1993. doi:10.7551/mitpress/3054.001.0001.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1007/3-540-17162-2_130
https://doi.org/10.1007/3-540-15648-8_17
https://doi.org/10.1007/3-540-15648-8_17
https://doi.org/10.23638/LMCS-16(1:7)2020
https://doi.org/10.1017/S0956796821000125
https://doi.org/10.1007/BFb0013061
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1007/978-3-662-21545-6_10
https://doi.org/10.1017/S096012950000311X
https://doi.org/10.1017/S096012950000311X
https://doi.org/10.1145/141471.141563
https://doi.org/10.1145/232627.232631
https://doi.org/10.1145/944705.944723
https://doi.org/10.1145/944705.944723
https://doi.org/10.7551/mitpress/3054.001.0001

	1. Introduction
	2. Call-by-push-value, call-by-value, and call-by-name
	2.1. Call-by-value and call-by-name
	2.2. Examples

	3. Order-enriched denotational semantics
	3.1. Order-enriched categories and strong monads
	3.2. Models of CBPV
	3.3. Examples

	4. The relation between call-by-value and call-by-name
	4.1. Examples

	5. A Galois connection between call-by-value and call-by-name
	6. The reasoning principle
	7. Related work
	8. Conclusions
	Acknowledgments
	References

