Reasoning about effectful programs and
evaluation order

Dylan McDermott

University of Cambridge

Joint work with Alan Mycroft

Goal

General framework for proving statements of the form

If <restriction on side-effects> then <evaluation order 1>
is equivalent to <evaluation order 2>

Examples:
> If there are no effects, then call-by-value is equivalent to
call-by-name
> If the only effect is nontermination, then call-by-name is
equivalent to call-by-need
> If the only effect is nondeterminism, then call-by-value is
equivalent to call-by-need

Method

Use an intermediate language that supports various evaluation
orders:
1. Translate from source language to intermediate language
call-by-name intermediate term

()™

e)<
e v
source eXpreSSion j (] D

X call-by-value intermediate term

2. Prove contextual equivalence

(e)™ =erx (e)”

Method

Use an intermediate language that supports various evaluation
orders:

1. Translate from source language to intermediate language
call-by-name intermediate term

()™
e)<
e v
source expression j (]/tD) ,
call-by-value intermediate term
2. Prove contextual equivalence

$((e)) =ere ()"

Subtlety: two translations have different types

(e)™ == o((e)™)

another intermediate term

Outline

How do we prove evaluation order equivalences (assuming global
restriction on side-effects)?

> When are call-by-value and call-by-name equivalent?

How do we do call-by-need?

> New intermediate language: extension of Levy's
call-by-push-value to capture call-by-need

> Example: name and need are equivalent if only effect is
nontermination

How do we do local (per expression) restrictions?

Call-by-push-value [Levy "99]

Split syntax into values and computations

> Values don't have side-effects, computations might

Call-by-push-value [Levy "99]

Split syntax into values and computations

> Values don't have side-effects, computations might

Not:
> Values don't reduce, computations might (complex values)

> Value types are call-by-value, computations types are
call-by-name

Call-by-push-value [Levy "99]

> Can put two computations together: if My, M, are
computations then
M] to x. Mz

is a computation

» Can thunk computations: if M is a computation then
thunk M

is a value

= can do call-by-value and call-by-name (but not call-by-need)

Call-by-push-value syntax

Value types: Value terms:
AB:i=... V,Weu=c| ... constants, products, etc.
| UC | thunk M thunks
| x
Computation types: Computation terms:
C,D:=... M,N = ... products, etc.
|A—>C | Ax. M | VM functions
| FA | returnV | M; to x. M, returners

| force V

Call-by-push-value syntax

Value types: Value terms:

AB:i=... V.W:ai=c| ... constants, products, etc.

| UC | thunk M thunks
| x
Computation types: Computation terms:

C,D:u=... M,N = ... products, etc.
|A—>C | Ax. M | VM functions
| FA | returnV | M; to x. M, returners

| forceV
'eM:C r-v:uc

I'+ thunk M : UC I'+forceV :C

Call-by-push-value syntax

Value types: Value terms:

AB:i=... V.W:ai=c| ... constants, products, etc.

| UC | thunk M thunks
| x
Computation types: Computation terms:

C,D:u=... M,N = ... products, etc.
|A—C | Ax. M | VM functions
| FA | returnV | M; to x. M, returners

| force V

Typing contexts: Ti=o¢|x: A

Call-by-push-value

Value types:
AB:i=...

| uc

Computation types:
C,D:u=...
|A—C
| FA

r'crv:A

syntax

Value terms:

V.W:ai=c| ... constants, products, etc.
| thunk M thunks
| x

Computation terms:

M,N = ... products, etc.
| Ax. M | VM functions
| returnV | M; to x. M, returners
| force V

't M; : FA FLx:AEM,:C

'k returnV : FA

F'eM;tox.My:C

Call-by-push-value equational theory

We also have an equational theory

v=V M=M

Use this to define contextual equivalence
M Zcix M/

iff

for all closed C of type FG, where G doesn’t contain thunks

Call-by-value and call-by-name

(eD” =ectx (e)"

Call-by-value and call-by-name

Source language types:

7 == unit | bool | T — 7’

Translations from value and name into CBPV:

T =
unit +—
bool +—

(r—>17) -

T're:7 >

value type (7)Y

unit
bool

U((z)* = F(')")

T

unit
bool
(r—>17)

T're:t

-

—
—
-

computation type (z)"

Funit
Fbool

()™ = ("))

()™, x: U(z)"

(D™ £ (e)™ : ()"

10

Call-by-value and call-by-name

11

Call-by-value and call-by-name

Isomorphism between call-by-value and call-by-name
computations?

TEM:F(z)¥ +— TrOM: (z)°
TEN: () +—» TrY N:F(z)"

12

Call-by-value and call-by-name

Isomorphism between call-by-value and call-by-name
computations?

TEM:F(z)¥ +— TrOM: (z)°
TEN: () +—» TrY N:F(z)"

Value to Name to Value:
¥, (@, (returnV)) = returnV

The other way depends on the effects

12

Logical relations for CBPV

value types A +— relations R[[A] on closed terms V : A

computation types C +— relations R[[Q]] on closed terms M : C

We'll want
(M,M") e R[FG] = M=M

for ground types G (to prove contextual equivalence)

13

Logical relations for CBPV
Assume:

» Defined in usual way on type formers excluding F

Rluc]
R[[A - g]]

{(thunk M, thunk M) | (M, M") € R[C])}
{(M, M) | V(V, V') € R[A]. (V'M, VM) € R[C]}

v

Closed under return:

V,VYeR[A] = (returnV,returnV’) € R[FA]

v

Closed under to: if x : Ar N,N’: C and
(M, M) e RI[EA] V(V,V’) € R[A]. (N[x—> V], N'[x—>V'])

then
(M tox.N,M tox.N') e R[[Q]]

v

Constants related to themselves: if ¢ : A then (c,c) € R[A]
Transitivity

v

14

Logical relations for CBPV

Lemma (Fundamental)
Ifxy: Ay, ..., xp : Ay e M : C and (V;, V) € R[A;] for each i then

(M[xl = ‘/17' . '9xfl = Vn],M[xl = ‘/1," . -’xn = Vr:]) € R[[Q]]

15

From Name to Value and back
Definition (Thunkable [Fihrmann '99])
A computation I' - M : FA is thunkable if
M to x.return (thunk (return x)) and return (thunk M)
are related by R[F(U(FA))].
This implies:
M to x.thunk (returnx) ‘N related to thunk M ‘N

Lemma
If everything is thunkable and M : (z)" then

(@Y. M) R[(z)"] M

16

The equivalence
Want to show that

Meaning:

x1 > thunk (@4, (return x1)))

(e)" =ctx ¥ ((IEI)n

xp > thunk (94, (return x,))

In particular, for closed e of ground type (unit or bool):

fe)* = (e)”

17

The equivalence

Lemma
Suppose everything is thunkable. If x; : Ay, ..., x, : Ay b e: A and

V; related to V; for each i then

(e)¥[x1 > Vi,...,xn > Vi

is related to

x1 > thunk (@4, (return V}))

\IIB (]eDn seees
xp > thunk (®,4 (returnV,))

18

A trivial example

For no side-effects:

R[FA] = {(returnV,returnV’) | (V,V’) € R[A]}

19

A non-example

Read-only state

get : Fbool

get to x. return () = return ()

get to x. get to y. return (x, y) = get to z.return(z, z)

Logical relation:

(get to x. if x then return V; else return V;

R[[FA]] = { (Vl’ V1,)7 (Vz, VZ’) € R[[A]]}

.get to x. if x then return V; else return V)

Not all computations are thunkable!

> All thunkable computations have the form

returnV
20

Goal

General framework for proving statements of the form

If <restriction on side-effects> then <evaluation order 1>
is equivalent to <evaluation order 2>

Examples:

> 1 fFects—tl . :
eall-by-rame

> If the only effect is nontermination, then call-by-name is
equivalent to call-by-need

> If the only effect is nondeterminism, then call-by-value is
equivalent to call-by-need

21

Extended call-by-push-value (ECBPV)

New computation forms:

M,N :=
| x computation variables
| M; need x. M, call-by-need sequencing
Typing:
F's=...|x:FA
(x:FA) eT I'M;:FA ILx:FArM,:C

IF'tx:FA 't M; need x. M, : C

22

Extended call-by-push-value

Important equation:

M; need x.x to y. M, =

Associativity:

(M; tox.M;) toy.Ms
(M; need x. M,) need y. M5
(M; need x. M;) toy.Ms
(M; to x. M) need y. M;

M; to y. My[x— return y]

H

M,

tox.(M, toy.Ms)

M need x.(M; need y. M;)
M; need x.(M; to y.Ms;)

M,

to x. (M, need y. Ms)

23

Extended call-by-push-value

Given

't M; :FA Ix :FAEM;:C

have various evaluation orders:
> Call-by-value: M, value x. M,

> Call-by-name: M; name x. M;

= M; to y. My[x—returny]

= My[x— Mi]
> Call-by-need: M; need x. M, (builtin)

24

Call-by-need translation

unit
bool

(r —=1')

1171 1

e
=
=
1

need

value type (7))

unit
bool
U(U(F(]TDneed) — FqT/Dneed)

(]FDneed’ X F(]T[)need

25

Call-by-need translation

r > value type (z])"eed
unit +— unit
bool +— bool
(T — T’) — U(U(F(]TDneed) — FqT/Dneed)
Ix:7 (]FDneed’ X F(]T[)need

This could also be call-by-name!

25

Call-by-need translation

Tre:7} S (]F[)needt (]e[)need . F(]TDneed
ee’ (e)™<? to f.(thunk (e’)"¢%) (force f)

return (thunk (Ax’.

X (force x’) need x. (e)™))

Two nice properties:
> Applying lambdas

(](/1}(e) e/[)need = (]e/Dneed need x. (]e[)need

> Translation is sound (wrt small-step operational semantics)

e I}s\";}d e N (]eDneed = (]e/[)need

[Ariola & Felleisen '97] VA

26

Proving an equivalence

If the only effect is nontermination, call-by-name is equiv-
alent to call-by-need

Method:

1. Instantiate ECBPV: add constants that induce diverging
computations Q¢

2. Prove internal equivalence:
M;namex. M; = M; need x. M,

3. Corollary:
(]eDmogg1 =i (]e[)need

27

Internal equivalence: proof idea
M;namex. M, = M need x. M,

Proof: use logical relations

> Reasoning about to:

Qpa to x. My = Q¢ returnV to x. My = My[x— V]

diverging __r ~— pure computation

computation

» Don't have similar equations for need:
Qpa need x. M, # Q¢

> Relate open terms: Kripke logical relations of varying arity
[Jung and Tiuryn '93]

RIANT C Termi1 X Termg

28

Global restriction on side-effects

If whole language restricted to nontermination, then

Minamex. M, =, M; need x. M,

29

Local restriction on side-effects

If wheletanguage M, restricted to nontermination, then

Minamex. M, =, M; need x. M,

29

Effect system for (E)CBPV

Goal: place upper bound on side-effects of computations
> Replace returner types FA with (¢)A
> Track effects e C 2

> = {diverge, get, put, raise, ... }

Q : ({diverge})A get : ({get})bool

> Internal equivalence (with effect system):
If My : (e)A for e C {diverge}, then

M;namex. M, =, M; need x. M,

30

Effect system for (E)CBPV

T+ M : (e)A
T,x:Ath IQ

'k M tox. M, : (¢)C

Subtyping C <: D
(eYA<: (VB if eCe’ and A<: B

Preordered monoid action: (¢)C
(e)((eNA) =(eUe)A
(e)(A—>C) = A—(e)C

31

Overview

How to prove an equivalence between evaluation orders:
1. Translate from source language to intermediate language
2. Prove contextual equivalence

(r)” —— P}

=

> Works for call-by-value, call-by-name
> Call-by-need using extended call-by-push-value

> Also works for local restrictions on side-effects using an effect
system

32

A slightly less trivial example

C-style undefined behaviour
undefc < M undefps to x. M = undefc

Logical relation:

R[FA] := {(returnV,returnV’) | (V,V’) € R[A]}
U {(undefgs, M)}

Can replace value with name (but not name with value)

33

	Appendix

