
Reasoning about effectful programs and
evaluation order

Dylan McDermott

University of Cambridge

Joint work with Alan Mycroft

1

Goal

General framework for proving statements of the form
If <restriction on side-effects> then <evaluation order 1>
is equivalent to <evaluation order 2>

Examples:
▶ If there are no effects, then call-by-value is equivalent to

call-by-name
▶ If the only effect is nontermination, then call-by-name is

equivalent to call-by-need
▶ If the only effect is nondeterminism, then call-by-value is

equivalent to call-by-need

2

Method
Use an intermediate language that supports various evaluation
orders:

1. Translate from source language to intermediate language

Le Mn
e Le Mv

source expression
call-by-value intermediate term

call-by-name intermediate term

2. Prove contextual equivalence

Le Mn �ctx Le Mv

Subtlety: two translations have different types

Le Mn φ(Le Mn)
another intermediate term

3

Method
Use an intermediate language that supports various evaluation
orders:

1. Translate from source language to intermediate language

Le Mn
e Le Mv

source expression
call-by-value intermediate term

call-by-name intermediate term

2. Prove contextual equivalence

φ(Le Mn) �ctx Le Mv
Subtlety: two translations have different types

Le Mn φ(Le Mn)
another intermediate term

3

Outline

How do we prove evaluation order equivalences (assuming global
restriction on side-effects)?
▶ When are call-by-value and call-by-name equivalent?

How do we do call-by-need?
▶ New intermediate language: extension of Levy’s

call-by-push-value to capture call-by-need
▶ Example: name and need are equivalent if only effect is

nontermination

How do we do local (per expression) restrictions?

4

Call-by-push-value [Levy ’99]

Split syntax into values and computations
▶ Values don’t have side-effects, computations might

Not:
▶ Values don’t reduce, computations might (complex values)
▶ Value types are call-by-value, computations types are

call-by-name

5

Call-by-push-value [Levy ’99]

Split syntax into values and computations
▶ Values don’t have side-effects, computations might

Not:
▶ Values don’t reduce, computations might (complex values)
▶ Value types are call-by-value, computations types are

call-by-name

5

Call-by-push-value [Levy ’99]

▶ Can put two computations together: if M1,M2 are
computations then

M1 to x .M2

is a computation
▶ Can thunk computations: if M is a computation then

thunkM

is a value

⇒ can do call-by-value and call-by-name (but not call-by-need)

6

Call-by-push-value syntax

Value types:
A,B F . . .

| UC

Computation types:
C,D F . . .

| A → C

| FA

Value terms:
V ,W F c | . . . constants, products, etc.

| thunkM thunks

| x
Computation terms:

M,N F . . . products, etc.

| λx .M | V ‘M functions

| returnV | M1 to x .M2 returners

| forceV

7

Call-by-push-value syntax

Value types:
A,B F . . .

| UC

Computation types:
C,D F . . .

| A → C

| FA

Value terms:
V ,W F c | . . . constants, products, etc.

| thunkM thunks

| x
Computation terms:

M,N F . . . products, etc.

| λx .M | V ‘M functions

| returnV | M1 to x .M2 returners

| forceV

Γ ⊢ M : C

Γ ⊢ thunkM : UC

Γ ⊢ V : UC

Γ ⊢ forceV : C

7

Call-by-push-value syntax

Value types:
A,B F . . .

| UC

Computation types:
C,D F . . .

| A → C

| FA

Value terms:
V ,W F c | . . . constants, products, etc.

| thunkM thunks

| x
Computation terms:

M,N F . . . products, etc.

| λx .M | V ‘M functions

| returnV | M1 to x .M2 returners

| forceV

Typing contexts: Γ F ⋄ | x : A

7

Call-by-push-value syntax

Value types:
A,B F . . .

| UC

Computation types:
C,D F . . .

| A → C

| FA

Value terms:
V ,W F c | . . . constants, products, etc.

| thunkM thunks

| x
Computation terms:

M,N F . . . products, etc.

| λx .M | V ‘M functions

| returnV | M1 to x .M2 returners

| forceV

Γ ⊢ V : A

Γ ⊢ returnV : FA

Γ ⊢ M1 : FA Γ,x : A ⊢ M2 : C

Γ ⊢ M1 to x .M2 : C

7

Call-by-push-value equational theory

We also have an equational theory

V ≡ V ′ M ≡ M ′

Use this to define contextual equivalence

M �ctx M ′

iff
C[M] ≡ C[M ′]

for all closed C of type FG, where G doesn’t contain thunks

8

Call-by-value and call-by-name

Le Mv �ctx Le Mn

9

Call-by-value and call-by-name

Source language types:

τ F unit | bool | τ → τ ′

Translations from value and name into CBPV:
τ 7→ value type Lτ Mv τ 7→ computation type Lτ Mn

unit 7→ unit unit 7→ F unit
bool 7→ bool bool 7→ F bool

(τ → τ ′) 7→ U(Lτ Mv → FLτ ′Mv) (τ → τ ′) 7→ ((ULτ Mn) → Lτ ′Mn)
Γ,x : τ 7→ LΓMv,x : Lτ Mv Γ,x : τ 7→ LΓMn,x : ULτ Mn
Γ ⊢ e : τ 7→ LΓMv ⊢ Le Mv : FLτ Mv Γ ⊢ e : τ 7→ LΓMn ⊢ Le Mn : Lτ Mn

10

Call-by-value and call-by-name

LΓMv FLτ Mv

LΓMn Lτ Mn

Le Mv

�ctx

Le Mn

11

Call-by-value and call-by-name

Isomorphism between call-by-value and call-by-name
computations?

Γ ⊢ M : FLτ Mv 7→ Γ ⊢ ΦτM : Lτ Mn
Γ ⊢ N : Lτ Mn 7→ Γ ⊢ Ψτ N : FLτ Mv

Value to Name to Value:

Ψτ (Φτ (returnV)) ≡ returnV

The other way depends on the effects

12

Call-by-value and call-by-name

Isomorphism between call-by-value and call-by-name
computations?

Γ ⊢ M : FLτ Mv 7→ Γ ⊢ ΦτM : Lτ Mn
Γ ⊢ N : Lτ Mn 7→ Γ ⊢ Ψτ N : FLτ Mv

Value to Name to Value:

Ψτ (Φτ (returnV)) ≡ returnV

The other way depends on the effects

12

Logical relations for CBPV

value types A 7→ relations R⟦A⟧ on closed terms V : A

computation types C 7→ relations R
⟦
C
⟧

on closed terms M : C

We’ll want
(M,M ′) ∈ R⟦FG⟧ ⇒ M ≡ M ′

for ground types G (to prove contextual equivalence)

13

Logical relations for CBPV
Assume:
▶ Defined in usual way on type formers excluding F

R
⟦
UC

⟧
=

{
(thunkM, thunkM ′) | (M,M ′) ∈ R

⟦
C
⟧}

R
⟦
A → C

⟧
=

{
(M,M ′) | ∀(V ,V ′) ∈ R⟦A⟧. (V ‘M,V ′‘M ′) ∈ R

⟦
C
⟧}

▶ Closed under return:

(V ,V ′) ∈ R⟦A⟧ ⇒ (returnV , returnV ′) ∈ R⟦FA⟧
▶ Closed under to: if x : A ⊢ N ,N ′ : C and

(M,M ′) ∈ R⟦FA⟧ ∀(V ,V ′) ∈ R⟦A⟧. (N [x 7→V],N ′[x 7→V ′])

then
(M to x .N ,M ′ to x .N ′) ∈ R

⟦
C
⟧

▶ Constants related to themselves: if c : A then (c, c) ∈ R⟦A⟧
▶ Transitivity

14

Logical relations for CBPV

Lemma (Fundamental)
If x1 : A1, . . . ,xn : An ⊢ M : C and (Vi ,V ′

i) ∈ R⟦Ai⟧ for each i then

(M[x1 7→ V1, . . . ,xn 7→ Vn],M[x1 7→ V ′
1 , . . . ,xn 7→ V ′

n]) ∈ R
⟦
C
⟧

15

From Name to Value and back

Definition (Thunkable [Führmann ’99])
A computation Γ ⊢ M : FA is thunkable if

M to x . return (thunk (returnx)) and return (thunkM)

are related by R⟦F(U(FA))⟧.

This implies:

M to x . thunk (returnx) ‘N related to thunkM ‘N

Lemma
If everything is thunkable and M : Lτ Mn then

(Φτ (ΨτM)) R
⟦Lτ Mn⟧ M

16

The equivalence
Want to show that

LΓMv FLτ Mv

LΓMn Lτ Mn

Le Mv

�ctx

Le Mn
Meaning:

Le Mv �ctx ΨB ©­«Le Mn

x1 7→ thunk (ΦA1 (returnx1))
, . . . ,

xn 7→ thunk (ΦAn (returnxn))

ª®¬
In particular, for closed e of ground type (unit or bool):

Le Mv ≡ Le Mn
17

The equivalence

Lemma
Suppose everything is thunkable. If x1 : A1, . . . ,xn : An ⊢ e : A and
Vi related to V ′

i for each i then

Le Mv[x1 7→ V1, . . . ,xn 7→ Vn]

is related to

ΨB
©­«Le Mn


x1 7→ thunk (ΦA1 (returnV ′

1))
, . . . ,

xn 7→ thunk (ΦAn (returnV ′
n))

ª®¬

18

A trivial example

For no side-effects:

R⟦FA⟧ = {(returnV , returnV ′) | (V ,V ′) ∈ R⟦A⟧}

19

A non-example
Read-only state

get : F bool

get to x . return () ≡ return ()
get to x . get to y. return (x ,y) ≡ get to z. return (z, z)

Logical relation:

R⟦FA⟧ =
{
(get to x . if x then return V1 else return V2

,get to x . if x then returnV ′
1 else returnV

′
2)

���� (V1,V ′
1), (V2,V ′

2) ∈ R⟦A⟧
}

Not all computations are thunkable!
▶ All thunkable computations have the form

returnV
20

Goal

General framework for proving statements of the form
If <restriction on side-effects> then <evaluation order 1>
is equivalent to <evaluation order 2>

Examples:
▶ If there are no effects, then call-by-value is equivalent to

call-by-name
▶ If the only effect is nontermination, then call-by-name is

equivalent to call-by-need
▶ If the only effect is nondeterminism, then call-by-value is

equivalent to call-by-need

21

Extended call-by-push-value (ECBPV)

New computation forms:

M,N F . . .

| x computation variables

| M1 need x .M2 call-by-need sequencing

Typing:
Γ F . . . | x : FA

(x : FA) ∈ Γ

Γ ⊢ x : FA

Γ ⊢ M1 : FA Γ,x : FA ⊢ M2 : C

Γ ⊢ M1 need x .M2 : C

22

Extended call-by-push-value

Important equation:

M1 need x . x to y.M2 ≡ M1 to y.M2[x 7→returny]

Associativity:

(M1 to x .M2) to y.M3 ≡ M1 to x . (M2 to y.M3)
(M1 need x .M2) need y.M3 ≡ M1 need x . (M2 need y.M3)
(M1 need x .M2) to y.M3 ≡ M1 need x . (M2 to y.M3)
(M1 to x .M2) need y.M3 . M1 to x . (M2 need y.M3)

23

Extended call-by-push-value

Given
Γ ⊢ M1 : FA Γ,x : FA ⊢ M2 : C

have various evaluation orders:
▶ Call-by-value: M1 valuex .M2 ≡ M1 to y.M2[x 7→returny]
▶ Call-by-name: M1 namex .M2 ≡ M2[x 7→M1]
▶ Call-by-need: M1 need x .M2 (builtin)

24

Call-by-need translation

τ 7→ value type Lτ Mneed
unit 7→ unit

bool 7→ bool

(τ → τ ′) 7→ U
(
U(FLτ Mneed) → FLτ ′Mneed)

Γ,x : τ 7→ LΓMneed, x : FLτ Mneed

This could also be call-by-name!

25

Call-by-need translation

τ 7→ value type Lτ Mneed
unit 7→ unit

bool 7→ bool

(τ → τ ′) 7→ U
(
U(FLτ Mneed) → FLτ ′Mneed)

Γ,x : τ 7→ LΓMneed, x : FLτ Mneed
This could also be call-by-name!

25

Call-by-need translation

Γ ⊢ e : τ LΓMneed ⊢ Le Mneed : FLτ Mneed
e e ′ Le Mneed to f . (thunk Le ′Mneed) ‘ (force f)
λx . e

return (thunk (λx ′.

(forcex ′) need x . Le Mneed))
Two nice properties:
▶ Applying lambdasL(λx . e) e ′Mneed ≡ Le ′Mneed need x . Le Mneed
▶ Translation is sound (wrt small-step operational semantics)

e
need
⇝ e ′ ⇒ Le Mneed ≡ Le ′Mneed

[Ariola & Felleisen ’97]
26

Proving an equivalence

If the only effect is nontermination, call-by-name is equiv-
alent to call-by-need

Method:
1. Instantiate ECBPV: add constants that induce diverging

computations ΩC

2. Prove internal equivalence:

M1 namex .M2 �ctx M1 need x .M2

3. Corollary: Le Mmoggi �ctx Le Mneed

27

Internal equivalence: proof idea

M1 namex .M2 �ctx M1 need x .M2

Proof: use logical relations
▶ Reasoning about to:

ΩFA to x .M2 ≡ ΩC returnV to x .M2 ≡ M2[x 7→V]
diverging
computation pure computation

▶ Don’t have similar equations for need:

ΩFA need x .M2 ̸≡ ΩC

▶ Relate open terms: Kripke logical relations of varying arity
[Jung and Tiuryn ’93]

R⟦A⟧ Γ ⊆ TermΓ
A × TermΓ

A

28

Global restriction on side-effects

If whole language

M1

restricted to nontermination, then

M1 namex .M2 �ctx M1 need x .M2

29

Local restriction on side-effects

If whole language M1 restricted to nontermination, then

M1 namex .M2 �ctx M1 need x .M2

29

Effect system for (E)CBPV

Goal: place upper bound on side-effects of computations
▶ Replace returner types FA with ⟨ε⟩A
▶ Track effects ε ⊆ Σ

Σ B {diverge, get, put, raise, . . . }

Ω : ⟨{diverge}⟩A get : ⟨{get}⟩bool · · ·
▶ Internal equivalence (with effect system):

If M1 : ⟨ε⟩A for ε ⊆ {diverge}, then

M1 namex .M2 �ctx M1 need x .M2

30

Effect system for (E)CBPV

Γ ⊢ M : C C <: D

Γ ⊢ M : D
Subtyping C <: D
⟨ε⟩A <: ⟨ε ′⟩B if ε ⊆ ε ′ and A <: B

Γ ⊢ M1 : ⟨ε⟩A
Γ,x : A ⊢ M2 : C

Γ ⊢ M1 to x .M2 : ⟨ε⟩C

Preordered monoid action: ⟨ε⟩C
⟨ε⟩(⟨ε ′⟩A) B ⟨ε ∪ ε ′⟩A
⟨ε⟩(A→C) B A→⟨ε⟩C

31

Overview

How to prove an equivalence between evaluation orders:
1. Translate from source language to intermediate language
2. Prove contextual equivalence

LΓMv FLτ Mv

LΓMn Lτ Mn

Le Mv
�ctx

Le Mn

▶ Works for call-by-value, call-by-name
▶ Call-by-need using extended call-by-push-value

▶ Also works for local restrictions on side-effects using an effect
system

32

A slightly less trivial example

C-style undefined behaviour

undefC ≼ M undefFA to x .M ≡ undefC

Logical relation:

R⟦FA⟧ B {(returnV , returnV ′) | (V ,V ′) ∈ R⟦A⟧}
∪ {(undefFA, M)}

Can replace value with name (but not name with value)

33

	Appendix

