
How to construct graded monads

Dylan McDermott

1

Computational effects, with grades
Each computation has a grade 𝑒 ∈ G, where (G, ≤, 1, ·) is an ordered monoid

Γ ⊢ 𝑉 : 𝐴
Γ ⊢ return𝑉 : 𝐴& 1

Γ ⊢ 𝑀1 : 𝐴& 𝑒1 Γ, 𝑥 : 𝐴 ⊢ 𝑀2 : 𝐴& 𝑒2

Γ ⊢ (do 𝑥 <- 𝑀1 ; 𝑀2) : 𝐴& (𝑒1 · 𝑒2)
Γ ⊢ 𝑀 : 𝐴& 𝑒 𝑒 ≤ 𝑒′

Γ ⊢ 𝑀 : 𝐴& 𝑒′

Interpret computations using a graded monad R:

⟦Γ ⊢ 𝑀 : 𝐴& 𝑒⟧ : ⟦Γ⟧ → 𝑅𝑒⟦𝐴⟧

instead of a monad T:
⟦Γ ⊢ 𝑀 : 𝐴& 𝑒⟧ : ⟦Γ⟧ → 𝑇⟦𝐴⟧

Example: may analysis for global state uses the ordered monoid

(P{get, put}, ⊆, ∅,∪)

so that 𝑒 ⊆ {get, put}
2

Example: backtracking with cut

or(or(or(or(return11, return12), fail),
or(return13, cut)), return14) : int&⊤

Effectful operations:
Γ ⊢ 𝑀1 : 𝐴& 𝑒1 Γ ⊢ 𝑀2 : 𝐴& 𝑒2

Γ ⊢ or(𝑀1, 𝑀2) : 𝐴& (𝑒1 ⊓ 𝑒2) Γ ⊢ fail : 𝐴&⊤ Γ ⊢ cut : 𝐴&⊥

Ordered monoid ({⊥, 1,⊤}, ≤, 1, ·):
⊤ don’t know anything

≤

1 definitely cuts or returns something

≤

⊥ definitely cuts

⊤ · 𝑒 = ⊤
1 · 𝑒 = 𝑒
⊥ · 𝑒 = ⊥

3

Monads

A monad T consists of
▶ a set 𝑇𝑋 for each set 𝑋 ;
▶ a function return : 𝑋 → 𝑇𝑋 for each 𝑋 ;
▶ a function (>>=) : 𝑇𝑋 → (𝑋 → 𝑇𝑌) → 𝑇𝑌 for each 𝑋,𝑌 ;

satisfying the monad laws:

return𝑥 >>= 𝑓 = 𝑓 𝑥 (left unit)
𝑡 = 𝑡 >>= return (right unit)

(𝑡 >>= 𝑓) >>= 𝑔 = 𝑡 >>= 𝜆𝑦.(𝑓 𝑦 >>= 𝑔) (associativity)

4

Graded monads
A graded monad R consists of
▶ an ordered monoid (G, ≤, 1, ·) (grades);
▶ a set 𝑅𝑒𝑋 for each grade 𝑒 ∈ G, set 𝑋 (computations of grade 𝑒);
▶ a function return : 𝑋 → 𝑅1𝑋 for each 𝑋 ;
▶ a function (

𝑒1,𝑒2
>>=) : 𝑅𝑒1𝑋 → (𝑋 → 𝑅𝑒2𝑌) → 𝑅(𝑒1 · 𝑒2)𝑌 (bind)

for each 𝑒1, 𝑒2 ∈ G, 𝑋,𝑌 ;
▶ a function 𝑅(𝑒≤𝑒′)𝑋 : 𝑅𝑒𝑋 → 𝑅𝑒′𝑋 (subgrading)

for each 𝑒 ≤ 𝑒′, 𝑋
satisfying the monad laws

return𝑥
1,𝑒
>>= 𝑓 = 𝑓 𝑥 (left unit)

𝑟 = 𝑟
𝑒,1
>>= return (right unit)

(𝑟
𝑒1,𝑒2
>>= 𝑓)

𝑒1 ·𝑒2,𝑒3
>>= 𝑔 = 𝑟

𝑒1,𝑒2 ·𝑒3
>>= 𝜆𝑦.(𝑓 𝑦

𝑒2,𝑒3
>>= 𝑔) (associativity)

and some laws about subgrading
5

Example: may analysis for global state

For a non-empty set 𝑆 of states:
▶ ordered monoid (P{get, put}, ⊆, ∅,∪)
▶ sets of computations

𝑅∅𝑋 = 𝑋 𝑅{get}𝑋 = 𝑆 ⇒ 𝑋

𝑅{put}𝑋 = (1 + 𝑆) × 𝑋 𝑅{get, put}𝑋 = 𝑆 ⇒ 𝑆 × 𝑋

▶ return = id : 𝑋 → 𝑅∅𝑋
▶ 16 cases of

𝑒1,𝑒2
>>=

▶ 9 cases of 𝑅(𝑒 ≤ 𝑒′)
▶ 64 associativity laws
▶ some other laws

6

Example: backtracking with cut

⊤ don’t know anything

≤

1
definitely cuts
or returns something

≤

⊥ definitely cuts

𝑅𝑒𝑋 = {(xs, 𝑐) ∈ List𝑋 × {cut, nocut}
| (𝑒 = ⊥ ⇒ 𝑐 = cut)
∧ (𝑒 = 1 ⇒ 𝑐 = cut ∨ xs ≠ [])}

7

Gradings of monads
A grading R of a (non-graded) monad T consists of
▶ an ordered monoid (G, ≤, 1, ·)
▶ a subset 𝑅𝑒𝑋 ⊆ 𝑇𝑋 for each 𝑒 ∈ G, set 𝑋

such that
▶ 𝑅𝑒𝑋 ⊆ 𝑅𝑒′𝑋 for 𝑒 ≤ 𝑒′

▶ the return and bind functions

return : 𝑋 → 𝑇𝑋 (>>=) : 𝑇𝑋 → (𝑋 → 𝑇𝑌) → 𝑇𝑌

restrict to functions

return : 𝑋 → 𝑅1𝑋 (
𝑒1,𝑒2
>>=) : 𝑅𝑒1𝑋 → (𝑋 → 𝑅𝑒2𝑌) → 𝑅(𝑒1 · 𝑒2)𝑌

The restricted functions are the return and bind of a graded monad R, with subgrading
functions 𝑅(𝑒 ≤ 𝑒′)𝑋 : 𝑅𝑒𝑋 ⊆ 𝑅𝑒′𝑋

8

Gradings of monads
▶ Backtracking:

𝑅𝑒𝑋 = {(xs, 𝑐) ∈ 𝑇𝑋 | (𝑒 = ⊥ ⇒ 𝑐 = cut)
∧ (𝑒 = 1 ⇒ 𝑐 = cut ∨ xs ≠ [])}

where
𝑇𝑋 = List𝑋 × {cut, nocut}

▶ Global state:

𝑅𝑒𝑋 � {𝑡 ∈ 𝑇𝑋
| (put ∉ 𝑒 ⇒ (fst ◦ 𝑡) is identity)
∧ (get ∉ 𝑒 ⇒ (fst ◦ 𝑡) is constant or identity ∧ (snd ◦ 𝑡) is constant)}

where
𝑇𝑋 = 𝑆 ⇒ 𝑆 × 𝑋

9

Gradings are good for program reasoning

If T forms an adequate model

⟦Γ ⊢ 𝑀 : 𝐴⟧T : ⟦Γ⟧T → 𝑇⟦𝐴⟧T

⟦𝑀⟧T = ⟦𝑁⟧T ⇒ 𝑀 ≃ctx 𝑁

then any grading R of T also forms an adequate model

⟦𝑀⟧R = ⟦𝑁⟧R ⇒ 𝑀 ≃ctx 𝑁 where ⟦Γ ⊢ 𝑀 : 𝐴& 𝑒⟧R : ⟦Γ⟧R → 𝑅𝑒⟦𝐴⟧R

but ⟦𝑀⟧R = ⟦𝑁⟧R is usually weaker (and easier to prove) than ⟦𝑀⟧T = ⟦𝑁⟧T

10

How to construct graded monads

Supply some data:
1. a (non-graded) monad T;
2. an ordered set of grades (G, ≤), and unit grade 1;
3. a subset 𝑅𝑒𝑋 ⊆ 𝑇𝑋 for each 𝑒 ∈ G;
4. a multiplication (·) : G × G → G

such that (G, ≤, 1, ·) and 𝑅 form a grading of T

11

The canonical grading of a monad

For each monad T, there is1 an ordered monoid (Sub(T), ⊑, 𝐼 , ⊗), where
▶ Sub(T) is the set of subfunctors 𝑃 of 𝑇 , i.e. set-indexed families of subsets

𝑃𝑋 ⊆ 𝑇𝑋

closed under 𝑇 𝑓 = (𝜆𝑡 . 𝑡 >>= (𝑓 ◦ return)) : 𝑇𝑋 → 𝑇𝑌 for each 𝑓 : 𝑋 → 𝑌

▶ 𝑃 ⊑ 𝑃 ′ iff ∀𝑋 . 𝑃𝑋 ⊆ 𝑃 ′𝑋

▶ 𝐼𝑋 = {return𝑥 | 𝑥 ∈ 𝑋 }
▶ (𝑃1 ⊗ 𝑃2)𝑋 = {𝑡 >>= 𝑓 | 𝑌 ∈ Set, 𝑡 ∈ 𝑃1𝑌, 𝑓 : 𝑌 → 𝑃2𝑋 }

1ignoring some size issues
12

Constructing (·)

A grading of T is equivalently
▶ an ordered monoid (G, ≤, 1, ·)
▶ together with a lax homomorphism of ordered monoids 𝑅 : G → Sub(T)

𝑒 ≤ 𝑒′ ⇒ 𝑅𝑒 ⊑ 𝑅𝑒′ 𝐼 ⊑ 𝑅1 𝑅𝑒1 ⊗ 𝑅𝑒2 ⊑ 𝑅(𝑒1 · 𝑒2)

So if the following is associative and unital, we get a grading:

𝑒1 · 𝑒2 = 𝐿𝑅𝑒1 ⊗ 𝑅𝑒2

assuming 𝑅 has a left adjoint 𝐿 : Sub(T) → G:

∀𝑒 ∈ G. 𝐿𝑃 ≤ 𝑒 ⇔ 𝑃 ⊑ 𝑅𝑒

13

Constructing (·)
▶ For

𝑅𝑒𝑋 = {(xs, 𝑐) ∈ 𝑇𝑋 | (𝑒 = ⊥ ⇒ 𝑐 = cut)
∧ (𝑒 = 1 ⇒ 𝑐 = cut ∨ xs ≠ [])}

we get

𝐿𝑃 =

⊥ if ∃𝑋 . ([], nocut) ∈ 𝑃𝑋

1 if ∃𝑋, xs. (xs, nocut) ∈ 𝑃𝑋

⊤ otherwise

⊤ · 𝑒 = ⊤
1 · 𝑒 = 𝑒
⊥ · 𝑒 = ⊥

▶ For
𝑅𝑒𝑋 � {𝑡 ∈ 𝑇𝑋

| (put ∉ 𝑒 ⇒ (fst ◦ 𝑡) is identity)
∧ (get ∉ 𝑒 ⇒ (fst ◦ 𝑡) is constant or identity ∧ (snd ◦ 𝑡) is constant)}

we get
𝐿𝑃 = {get, put} \ {op | ∀𝑋 . 𝑅{op}𝑋 ⊆ 𝑃𝑋 }

𝑒1 · 𝑒2 = 𝐿(𝑅𝑒1 ⊗ 𝑅𝑒2) = 𝑒1 ∪ 𝑒2

14

How to construct graded monads

Supply some data:
1. a (non-graded) monad T;
2. an ordered set of grades (G, ≤), and unit grade 1;
3. a subset 𝑅𝑒𝑋 ⊆ 𝑇𝑋 for each 𝑒 ∈ G;

such that 𝑅 : G → Sub(T), and such that (G, ≤, 1, ·) and 𝑅 form a grading of T

15

Constructing the subsets 𝑅𝑒𝑋 ⊆ 𝑇𝑋

Given a collection of operations (op : 𝑛), each with
▶ an algebraic operation

⟦op⟧ : (𝑇𝑋)𝑛 → 𝑇𝑋

▶ a choice of grading function
𝜃op : G𝑛 → G

we can define 𝑅 as the smallest family of subsets such that
▶ return restricts to a function return : 𝑋 → 𝑅1𝑋

▶ ⟦op⟧ restricts to a function ⟦op⟧ : 𝑅𝑑1𝑋 × · · · × 𝑅𝑑𝑛𝑋 → 𝑅(𝜃op(𝑑1, . . . , 𝑑𝑛))𝑋

16

How to construct graded monads

Supply some data:
1. a (non-graded) monad T;
2. an ordered set of grades (G, ≤), and unit grade 1;
3. a subset 𝑅𝑒𝑋 ⊆ 𝑇𝑋 for each 𝑒 ∈ G

(in many cases, generated by considering algebraic operations);
such that 𝑅 : G → Sub(T), and such that (G, ≤, 1, ·) and 𝑅 form a grading of T

An alternative: present a graded monad by graded operations and equations

17

