How to construct graded monads

Dylan McDermott

Computational effects, with grades

Each computation has a grade $e \in \mathcal{G}$, where $(\mathcal{G}, \leq, 1, \cdot)$ is an ordered monoid
$\frac{\Gamma \vdash V: A}{\Gamma \vdash \operatorname{return} V: A \& 1} \quad \frac{\Gamma \vdash M_{1}: A \& e_{1} \quad \Gamma, x: A \vdash M_{2}: A \& e_{2}}{\Gamma \vdash\left(\text { do } x<-M_{1} ; M_{2}\right): A \&\left(e_{1} \cdot e_{2}\right)} \quad \frac{\Gamma \vdash M: A \& e \quad e \leq e^{\prime}}{\Gamma \vdash M: A \& e^{\prime}}$

Interpret computations using a graded monad R:

$$
\llbracket \Gamma \vdash M: A \& e \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \operatorname{Re} \llbracket A \rrbracket
$$

instead of a monad T :

$$
\llbracket \Gamma \vdash M: A \& e \rrbracket: \llbracket \Gamma \rrbracket \rightarrow T \llbracket A \rrbracket
$$

Example: may analysis for global state uses the ordered monoid

$$
(\mathcal{P}\{\text { get, put }\}, \subseteq, \emptyset, \cup)
$$

so that $e \subseteq\{$ get, put $\}$

Example: backtracking with cut

```
or(or(or(or(return11,return12), fail),
    or(return13, cut)),return14) : int & T
```

Effectful operations:

$$
\frac{\Gamma \vdash M_{1}: A \& e_{1} \quad \Gamma \vdash M_{2}: A \& e_{2}}{\Gamma \vdash \operatorname{or}\left(M_{1}, M_{2}\right): A \&\left(e_{1} \Pi e_{2}\right)} \overline{\Gamma \vdash \mathrm{fail}: A \& \top} \overline{\Gamma \vdash \mathrm{cut}: A \& \perp}
$$

Ordered monoid ($\{\perp, \mathbf{1}, \top\}, \leq, 1, \cdot)$:
T don't know anything
VI

$$
\begin{aligned}
\top \cdot e & =\top \\
1 \cdot e & =e \\
\perp \cdot e & =\perp
\end{aligned}
$$

1 definitely cuts or returns something

$$
\mathrm{VI}
$$

\perp definitely cuts

Monads

A monad T consists of

- a set $T X$ for each set X;
- a function return : $X \rightarrow T X$ for each X;
- a function (»=):TX $\rightarrow(X \rightarrow T Y) \rightarrow T Y$ for each X, Y;
satisfying the monad laws:

$$
\begin{aligned}
\text { return } x \gg=f & =f x & & \text { (left unit) } \\
t & =t \gg=\text { return } & & \text { (right unit) } \\
(t \gg f) \gg g & =t \gg=\lambda y .(f y \gg g) & & \text { (associativity) }
\end{aligned}
$$

Graded monads

A graded monad R consists of

- an ordered monoid ($\mathcal{G}, \leq, 1, \cdot)$ (grades);
- a set $\operatorname{Re} X$ for each grade $e \in \mathcal{G}$, set X (computations of grade e);
- a function return : $X \rightarrow R 1 X$ for each X;
- a function $\left(\stackrel{e_{1}, e_{2}}{\gg=}\right): R e_{1} X \rightarrow\left(X \rightarrow R e_{2} Y\right) \rightarrow R\left(e_{1} \cdot e_{2}\right) Y$ (bind) for each $e_{1}, e_{2} \in \mathcal{G}, X, Y$;
- a function $R\left(e \leq e^{\prime}\right) X: \operatorname{Re} X \rightarrow \operatorname{Re}^{\prime} X$ (subgrading) for each $e \leq e^{\prime}, X$
satisfying the monad laws

$$
\begin{aligned}
& \text { return } x \ggg=f=f x \\
& r=r \ggg=\text { return } \\
& \left(r \stackrel{e_{1}, e_{2}}{\gg=} f\right) \stackrel{e_{1} \cdot e_{2}, e_{3}}{\gg=} g=r \stackrel{e_{1}, e_{2} \cdot e_{3}}{\gg=} \lambda y \cdot\left(f y \stackrel{e_{2}, e_{3}}{\gg=} g\right) \\
& \text { (left unit) } \\
& \text { (right unit) } \\
& \text { (associativity) }
\end{aligned}
$$

and some laws about subgrading

Example: may analysis for global state

For a non-empty set S of states:

- ordered monoid ($\mathcal{P}\{$ get, put $\}, \subseteq, \emptyset, \cup$)
- sets of computations

$$
R \emptyset X=X
$$

$$
R\{\text { get }\} X=S \Rightarrow X
$$

$$
R\{\text { put }\} X=(1+S) \times X \quad R\{\text { get, put }\} X=S \Rightarrow S \times X
$$

- return $=i d: X \rightarrow R \emptyset X$
- 16 cases of $\stackrel{e_{1}, e_{2}}{\gg=}$
- 9 cases of $R\left(e \leq e^{\prime}\right)$
- 64 associativity laws
- some other laws

Example: backtracking with cut

T don't know anything VI
definitely cuts
or returns something
VI

$$
\begin{aligned}
\operatorname{Re} X=\{(\mathrm{xs}, c) & \in \operatorname{List} X \times\{\text { cut, nocut }\} \\
& \mid(e=\perp \Rightarrow c=\mathrm{cut}) \\
& \wedge(e=1 \Rightarrow c=\mathrm{cut} \vee \mathrm{xs} \neq[])\}
\end{aligned}
$$

\perp definitely cuts

Gradings of monads

A grading R of a (non-graded) monad T consists of

- an ordered monoid ($\mathcal{G}, \leq, 1, \cdot$)
- a subset $\operatorname{Re} X \subseteq T X$ for each $e \in \mathcal{G}$, set X
such that
- $\operatorname{Re} X \subseteq \operatorname{Re}^{\prime} X$ for $e \leq e^{\prime}$
- the return and bind functions

$$
\text { return : } X \rightarrow T X \quad(\gg): T X \rightarrow(X \rightarrow T Y) \rightarrow T Y
$$

restrict to functions

$$
\text { return : X } \rightarrow R 1 X \quad\binom{e_{1}, e_{2}}{\gg=}: R e_{1} X \rightarrow\left(X \rightarrow R e_{2} Y\right) \rightarrow R\left(e_{1} \cdot e_{2}\right) Y
$$

The restricted functions are the return and bind of a graded monad R , with subgrading functions $R\left(e \leq e^{\prime}\right) X: R e X \subseteq \operatorname{Re}^{\prime} X$

Gradings of monads

- Backtracking:

$$
\begin{aligned}
\operatorname{Re} X=\{(\mathrm{xs}, c) \in T X & (e=\perp \Rightarrow c=\operatorname{cut}) \\
& \wedge(e=1 \Rightarrow c=\operatorname{cut} \vee \mathrm{xs} \neq[])\}
\end{aligned}
$$

where

$$
T X=\operatorname{List} X \times\{\text { cut }, \text { nocut }\}
$$

- Global state:

$$
\operatorname{Re} X \cong\{t \in T X
$$

| (put $\notin e \Rightarrow($ fst $\circ t)$ is identity)
$\wedge($ get $\notin e \Rightarrow($ fst $\circ t)$ is constant or identity $\wedge($ snd $\circ t)$ is constant $)\}$
where

$$
T X=S \Rightarrow S \times X
$$

Gradings are good for program reasoning

If T forms an adequate model

$$
\begin{aligned}
& \llbracket \Gamma \vdash M: A \rrbracket_{\mathrm{T}}: \llbracket \Gamma \rrbracket_{\mathrm{T}} \rightarrow T \llbracket A \rrbracket_{\mathrm{T}} \\
& \llbracket M \rrbracket_{\mathrm{T}}=\llbracket N \rrbracket_{\mathrm{T}} \Rightarrow M \simeq_{\mathrm{ctx}} N
\end{aligned}
$$

then any grading R of T also forms an adequate model

$$
\llbracket M \rrbracket_{\mathrm{R}}=\llbracket N \rrbracket_{\mathrm{R}} \quad \Rightarrow \quad M \simeq_{\operatorname{ctx}} N \quad \text { where } \llbracket \Gamma \vdash M: A \& e \rrbracket_{\mathrm{R}}: \llbracket \Gamma \rrbracket_{\mathrm{R}} \rightarrow R e \llbracket A \rrbracket_{\mathrm{R}}
$$

but $\llbracket M \rrbracket_{\mathrm{R}}=\llbracket N \rrbracket_{\mathrm{R}}$ is usually weaker (and easier to prove) than $\llbracket M \rrbracket_{\mathrm{T}}=\llbracket N \rrbracket_{\mathrm{T}}$

How to construct graded monads

Supply some data:

1. a (non-graded) monad T;
2. an ordered set of grades (\mathcal{G}, \leq), and unit grade $\mathbf{1}$;
3. a subset $\operatorname{Re} X \subseteq T X$ for each $e \in \mathcal{G}$;
4. a multiplication $(\cdot): \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$
such that $(\mathcal{G}, \leq, \mathbf{1}, \cdot)$ and R form a grading of T

The canonical grading of a monad

For each monad T , there is ${ }^{1}$ an ordered monoid ($\left.\operatorname{Sub}(T), \sqsubseteq, I, \otimes\right)$, where

- $\operatorname{Sub}(T)$ is the set of subfunctors P of T, i.e. set-indexed families of subsets

$$
P X \subseteq T X
$$

closed under $T f=(\lambda t . t \gg(f \circ$ return $)): T X \rightarrow T Y$ for each $f: X \rightarrow Y$

- $P \sqsubseteq P^{\prime}$ iff $\forall X . P X \subseteq P^{\prime} X$
- $I X=\{$ return $x \mid x \in X\}$
- $\left(P_{1} \otimes P_{2}\right) X=\left\{t \gg=f \mid Y \in \operatorname{Set}, t \in P_{1} Y, f: Y \rightarrow P_{2} X\right\}$

Constructing (•)

A grading of T is equivalently

- an ordered monoid ($\mathcal{G}, \leq, 1, \cdot$)
- together with a lax homomorphism of ordered monoids $R: \mathcal{G} \rightarrow \operatorname{Sub}(\mathrm{T})$

$$
e \leq e^{\prime} \Rightarrow R e \sqsubseteq R e^{\prime} \quad I \sqsubseteq R 1 \quad R e_{1} \otimes R e_{2} \sqsubseteq R\left(e_{1} \cdot e_{2}\right)
$$

So if the following is associative and unital, we get a grading:

$$
e_{1} \cdot e_{2}=L R e_{1} \otimes R e_{2}
$$

assuming R has a left adjoint $L: \operatorname{Sub}(\mathrm{T}) \rightarrow \mathcal{G}$:

$$
\forall e \in \mathcal{G} . L P \leq e \quad \Leftrightarrow \quad P \sqsubseteq R e
$$

Constructing (•)

- For

$$
\begin{aligned}
\operatorname{Re} X=\{(\mathrm{xs}, c) \in T X \quad & (e=\perp \Rightarrow c=\operatorname{cut}) \\
& \wedge(e=1 \Rightarrow c=\operatorname{cut} \vee \mathrm{xs} \neq[])\}
\end{aligned}
$$

we get

$$
L P=\left\{\begin{array}{lll}
\perp & \text { if } \exists X .([], \text { nocut }) \in P X & \mathrm{~T} \cdot e=\mathrm{T} \\
1 & \text { if } \exists X, \mathrm{xs} .(\mathrm{xs}, \text { nocut }) \in P X & 1 \cdot e=e \\
\top & \text { otherwise } & \perp \cdot e=\perp
\end{array}\right.
$$

- For

$$
R e X \cong\{t \in T X
$$

| (put $\notin e \Rightarrow($ fst $\circ t)$ is identity)
$\wedge($ get $\notin e \Rightarrow($ fst $\circ t)$ is constant or identity $\wedge(\operatorname{snd} \circ t)$ is constant $)\}$
we get

$$
\begin{aligned}
L P= & \{\text { get, put }\} \backslash\{\text { op } \mid \forall X . R\{\text { op }\} X \subseteq P X\} \\
& e_{1} \cdot e_{2}=L\left(R e_{1} \otimes R e_{2}\right)=e_{1} \cup e_{2}
\end{aligned}
$$

How to construct graded monads

Supply some data:

1. a (non-graded) monad T ;
2. an ordered set of grades (\mathcal{G}, \leq), and unit grade $\mathbf{1}$;
3. a subset $\operatorname{Re} X \subseteq T X$ for each $e \in \mathcal{G}$;
such that $R: \mathcal{G} \rightarrow \operatorname{Sub}(\mathrm{T})$, and such that $(\mathcal{G}, \leq, 1, \cdot)$ and R form a grading of T

Constructing the subsets $\operatorname{Re} X \subseteq T X$

Given a collection of operations (op : n), each with

- an algebraic operation

$$
\llbracket \mathrm{op} \rrbracket:(T X)^{n} \rightarrow T X
$$

- a choice of grading function

$$
\theta_{\mathrm{op}}: \mathcal{G}^{n} \rightarrow \mathcal{G}
$$

we can define R as the smallest family of subsets such that

- return restricts to a function return : $X \rightarrow R 1 X$
- $\llbracket \mathrm{op} \rrbracket$ restricts to a function $\llbracket \mathrm{op} \rrbracket: R d_{1} X \times \cdots \times R d_{n} X \rightarrow R\left(\theta_{\mathrm{op}}\left(d_{1}, \ldots, d_{n}\right)\right) X$

How to construct graded monads

Supply some data:

1. a (non-graded) monad T ;
2. an ordered set of grades (\mathcal{G}, \leq), and unit grade $\mathbf{1}$;
3. a subset $\operatorname{Re} X \subseteq T X$ for each $e \in \mathcal{G}$
(in many cases, generated by considering algebraic operations);
such that $R: \mathcal{G} \rightarrow \operatorname{Sub}(\mathrm{T})$, and such that $(\mathcal{G}, \leq, \mathbf{1}, \cdot)$ and R form a grading of T
An alternative: present a graded monad by graded operations and equations
