Galois connecting call-by-value and call-by-name

Dylan McDermott Alan Mycroft
Goal

- Call-by-value: \((\lambda x. e) e' \rightsquigarrow^*_v (\lambda x. e) v \rightsquigarrow_v e[x \mapsto v] \rightsquigarrow^*_v \cdots\)

- Call-by-name: \((\lambda x. e) e' \rightsquigarrow^*_n e[x \mapsto e'] \rightsquigarrow^*_n \cdots\)

If we replace call-by-value with call-by-name, then:

- No side-effects: nothing changes
- Only recursion: behaviour changes, but if CBV terminates with result \(v\), CBN terminates with \(v\)
- Only nondeterminism: behaviour also different, but if CBV can terminate with result \(v\), then CBN can also terminate with result \(v\)
- Mutable state: behaviour changes, we can’t say much about how

Questions:

- How can we prove these?
- What properties of the side-effects do we need to prove something?
Goal

- Call-by-value: $(\lambda x. e) e' \rightsquigarrow^*_{v} (\lambda x. e) v \rightsquigarrow_{v} e[x \mapsto v] \rightsquigarrow_{v}^* \ldots$
- Call-by-name: $(\lambda x. e) e' \rightsquigarrow_{n} e[x \mapsto e'] \rightsquigarrow_{n}^* \ldots$

If we replace call-by-value with call-by-name, then:

- No side-effects: nothing changes
- Only recursion: behaviour changes

CBV: $(\lambda x. \text{false}) \Omega \rightsquigarrow_{v} (\lambda x. \text{false}) \Omega \rightsquigarrow_{v} \ldots$

CBN: $(\lambda x. \text{false}) \Omega \rightsquigarrow_{n} \text{false}$

but if CBV terminates with result v, CBN terminates with v
Goal

- Call-by-value: $\left(\lambda x . e\right) e' \rightsquigarrow_v^* \left(\lambda x . e\right) v \rightsquigarrow_v e[x \mapsto v] \rightsquigarrow_v^* \cdots$

- Call-by-name: $\left(\lambda x . e\right) e' \rightsquigarrow_n e[x \mapsto e'] \rightsquigarrow_n^* \cdots$

If we replace call-by-value with call-by-name, then:

- No side-effects: nothing changes
- Only recursion: behaviour changes, but if CBV terminates with result v, CBN terminates with v
- Only nondeterminism: behaviour also different, but if CBV can terminate with result v, then CBN can also terminate with result v
- Mutable state: behaviour changes, we can’t say much about how

Questions:

- How can we prove these?
- What properties of the side-effects do we need to prove something?
How to relate different semantics of the same language

1. Define another language that captures both semantics via two sound and adequate translations \((\cdot)^{\text{v}}, (\cdot)^{\text{n}}\)

\[
\begin{align*}
\text{(CBV)} & \quad (\langle e \rangle)^{\text{v}} \leftrightarrow e \quad \longrightarrow \quad (\langle e \rangle)^{\text{n}} \quad \text{(CBN)}
\end{align*}
\]

5. For programs (closed, ground expressions) \(e\)

\[
(\langle e \rangle)^{\text{v}} \preceq (\langle e \rangle)^{\text{n}}
\]
How to relate different semantics of the same language

1. Define another language that captures both semantics via two sound and adequate translations \(\langle-\rangle^v, \langle-\rangle^n \)

\[
\begin{align*}
\text{(CBV)} & \quad \langle e \rangle^v &\quad \longleftrightarrow & \quad e &\quad \longleftrightarrow & \quad \langle e \rangle^n &\quad \text{(CBN)}
\end{align*}
\]

2. Define maps between the two translations

\[
\begin{align*}
\text{CBV translation of } \tau &\quad \xrightarrow{\Phi_\tau} & \quad \text{CBN translation of } \tau
\end{align*}
\]

3. Show that \(\Phi, \Psi \) satisfy nice properties

4. Relate the two translations of (possibly open) expressions \(e \)

\[
\langle e \rangle^v \leq_{\text{ctx}} \Psi_\tau(\langle e \rangle^n[\Phi_\Gamma])
\]

5. For programs (closed, ground expressions) \(e \)

\[
\langle e \rangle^v \leq \langle e \rangle^n
\]
How to relate different semantics of the same language

To relate CBV and CBN:

1. **Call-by-push-value** [Levy '99] captures CBV and CBN
2. We can define maps Φ_τ, Ψ_τ using the syntax of CBPV
3. When side-effects are (lax) thunkable, these form Galois connections

 $\Phi_\tau \dashv \Psi_\tau$

 (wrt \leq_{ctx})

4. (3) implies $\langle e \rangle^v \leq_{ctx} \Psi_\tau (\langle e \rangle^n [\Phi])$
5. (4) is $\langle e \rangle^v \leq \langle e \rangle^n$ when e is a program
For recursion and nondeterminism, define

\[M_1 \preceq M_2 \iff \forall V. M_1 \Downarrow \text{return } V \Rightarrow M_2 \Downarrow \text{return } V \quad (\Downarrow \text{ is evaluation in CBPV}) \]

so \(M_1 \preceq_{\text{ctx}} M_2 \) means

\[\forall V. C[M_1] \Downarrow \text{return } V \Rightarrow C[M_2] \Downarrow \text{return } V \]

for closed, ground contexts \(C \)

Both side-effects are thunkable, so \(\Phi \) and \(\Psi \) form Galois connections, so

\[\langle e \rangle^v \preceq_{\text{ctx}} \Psi_\tau(\langle e \rangle^n[\Phi_\Gamma]) \]
Example

For programs e, we have

$$(e)^v \preceq (e)^n$$

so

$$e \xrightarrow{v}^* v \iff (e)^v \Downarrow \text{return } (v)$$

$$\Rightarrow (e)^n \Downarrow \text{return } (v)$$

$$\iff e \xrightarrow{n}^* v$$

(soundness)

$$(e)^v \preceq (e)^n$$

(adequacy)
Call-by-push-value [Levy ’99]

Split syntax into values and computations

- Values don’t reduce, computations do
Call-by-push-value [Levy '99]

Split syntax into values and computations

- Values don’t reduce, computations do

Evaluation order is explicit

- Sequencing of computations:

\[
\begin{align*}
\Gamma \vdash V : A & \quad \Gamma \vdash M_1 : FA & \quad \Gamma, x : A \vdash M_2 : C \\
\Gamma \vdash \text{return} V : FA & \quad \Gamma \vdash M_1 \text{ to } x. M_2 : C
\end{align*}
\]

- Thunks:

\[
\begin{align*}
\Gamma \vdash M : C & \quad \Gamma \vdash V : UC \\
\Gamma \vdash \text{thunk} M : UC & \quad \Gamma \vdash \text{force} V : C
\end{align*}
\]
Call-by-value and call-by-name

Source language types:

\[\tau ::= \text{unit} \mid \text{bool} \mid \tau \rightarrow \tau' \]

CBV and CBN translations into CBPV:

\[\begin{align*}
\tau & \mapsto \text{value type } (|\tau|)^v \\
\text{unit} & \mapsto \text{unit} \\
\text{bool} & \mapsto \text{bool} \\
(\tau \rightarrow \tau') & \mapsto U((|\tau|)^v \rightarrow F(|\tau'|)^v) \\
\end{align*} \]

\[\begin{align*}
\tau & \mapsto \text{computation type } (|\tau|)^n \\
\text{unit} & \mapsto F \text{ unit} \\
\text{bool} & \mapsto F \text{ bool} \\
(\tau \rightarrow \tau') & \mapsto ((U(|\tau|)^n) \rightarrow (|\tau'|)^n) \\
\end{align*} \]

\[\begin{align*}
\Gamma, x : \tau & \mapsto (|\Gamma|^v, x : (|\tau|^v) \\
\Gamma, x : \tau & \mapsto (|\Gamma|^n, x : U(|\tau|^n) \\
\Gamma \vdash e : \tau & \mapsto (|\Gamma|^v) \vdash (|e|^v : F(|\tau|^v) \\
\Gamma \vdash e : \tau & \mapsto (|\Gamma|^n) \vdash (|e|^n : (|\tau|^n)
\end{align*} \]
Call-by-value and call-by-name

Define maps between CBV and CBN:

$$\Gamma \vdash M : F \langle \tau \rangle^v \quad \Rightarrow \quad \Gamma \vdash \Phi \tau M : \langle \tau \rangle^n$$ \hspace{1cm} (CBV to CBN)

$$\Gamma \vdash N : \langle \tau \rangle^n \quad \Rightarrow \quad \Gamma \vdash \Psi \tau N : F \langle \tau \rangle^v$$ \hspace{1cm} (CBN to CBV)
Call-by-value and call-by-name

Define maps between CBV and CBN:

\[
\Gamma \vdash M : F (\tau)^V \quad \leftrightarrow \quad \Gamma \vdash \Phi_{\tau} M : (\tau)^n \quad \text{(CBV to CBN)}
\]

\[
\Gamma \vdash N : (\tau)^n \quad \leftrightarrow \quad \Gamma \vdash \Psi_{\tau} N : F (\tau)^V \quad \text{(CBN to CBV)}
\]

Example: for \(\tau = \text{unit} \to \text{unit} \), we have

\[
(\text{unit} \to \text{unit})^V = U (\text{unit} \to F \text{unit})
\]

\[
(\text{unit} \to \text{unit})^n = U (F \text{unit}) \to F \text{unit}
\]

\[
M \xrightarrow{\Phi_{\text{unit} \to \text{unit}}} M \text{ to } f. \lambda x. \text{force } x \text{ to } z. z \text{' force } f
\]

\[
N \xrightarrow{\Psi_{\text{unit} \to \text{unit}}} \text{return (thunk } (\lambda x. (\text{thunk return } x) \text{' } N))
\]
Lemma

If \((\Phi_\tau, \Psi_\tau)\) is a Galois connection (adjunction) for each \(\tau\), i.e.

\[
M \preceq_{\text{ctx}} \Psi_\tau(\Phi_\tau M) \quad \Phi_\tau(\Psi_\tau N) \preceq_{\text{ctx}} N
\]

then

\[
\lceil e \rceil^v \preceq_{\text{ctx}} \Psi_\tau(\lceil e \rceil^n[\Phi_\Gamma])
\]
Galois connection between CBV and CBN?

These do not always hold!

\[M \preceq_{\text{ctx}} \Psi_{\tau}(\Phi_{\tau}M) \quad \Phi_{\tau}(\Psi_{\tau}N) \preceq_{\text{ctx}} N \]

- Don’t hold for: exceptions, mutable state

\[\text{raise} \not\preceq_{\text{ctx}} \text{return}(\ldots) = \Psi_{\text{unit}\rightarrow\text{unit}}(\Phi_{\text{unit}\rightarrow\text{unit}} \text{raise}) \]

- Do hold for: no side-effects, recursion, nondeterminism

This is where the side-effects matter
Galois connection between CBV and CBN?

Definition (Thunkable [Führmann ’99])

A computation \(\Gamma \vdash M : FA \) is (lax) *Thunkable* if

\[
M \quad \text{to} \quad x. \text{return} (\text{thunk} (\text{return} x)) \quad \leq_{\text{ctx}} \quad \text{return} (\text{thunk} M)
\]

- Essentially: we’re allowed to suspend the computation \(M \)
- Implies \(M \) commutes with other computations, is (lax) discardable, (lax) copyable
Definition (Thunkable [Führmann ’99])

A computation $\Gamma \vdash M : FA$ is (lax) thunkable if

$$M \text{ to } x. \text{return } (\text{thunk } (\text{return } x)) \preceq_{\text{ctx}} \text{return } (\text{thunk } M)$$

- Essentially: we’re allowed to suspend the computation M
- Implies M commutes with other computations, is (lax) discardable, (lax) copyable

Lemma

If every computation is thunkable, then (Φ_τ, Ψ_τ) is a Galois connection.

Galois connection between CBV and CBN?
If every computation is thunkable then

\[(\langle e \rangle)^v \leq_{\text{ctx}} \Psi_\tau(\langle e \rangle^n[\Gamma])\]

for each \(e\). (And the converse holds for computations of ground type.)

And if \(e\) is a program then

\[(\langle e \rangle)^v \leq (\langle e \rangle)^n\]
Denotational semantics

Given an order-enriched model of CBPV

- cartesian closed Poset-category
- coproduct $1 + 1$
- strong Poset-monad T

prove that if

- T is lax idempotent ($T\eta_X \sqsubseteq \eta_{TX}$)

then

$$\left[\langle e \rangle^\nu \right] \sqsubseteq \psi_\tau \circ \left[\langle e \rangle^n \right] \circ \phi_\Gamma$$

For example:

<table>
<thead>
<tr>
<th>[[\Gamma]]</th>
<th>T</th>
<th>[[M]]</th>
<th>[[M]] \sqsubseteq [[N]]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No side-effects set Id function equality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recursion (\omega)cpo (-)(\perp) continuous function pointwise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nondeterminism poset free join-semilattice monotone function pointwise</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Denotational semantics

Given an order-enriched model of CBPV

- cartesian closed Poset-category
- coproduct 1 + 1
- strong Poset-monad \(T \)

prove that if

- \(T \) is lax idempotent \((T\eta_X \sqsubseteq \eta_TX)\)

then

\[
\llbracket (e)^v \rrbracket \sqsubseteq \psi_\tau \circ \llbracket (e)^n \rrbracket \circ \phi_\Gamma
\]

If the model is adequate:

\[
\llbracket M_1 \rrbracket \sqsubseteq \llbracket M_2 \rrbracket \Rightarrow M_1 \preceq_{ctx} M_2
\]

then

\[
(e)^v \preceq_{ctx} \Psi_\tau((e)^n[\Phi_\Gamma])
\]
How to relate two different semantics:

1. Translate from source language to intermediate language
2. Define maps between two translations
3. Relate terms:
 \[\langle e \rangle^V \leq_{\text{ctx}} \Psi_\tau(\langle e \rangle^n[\Phi_\Gamma]) \]

- Works for call-by-value and call-by-name
- Also works for other things like comparing direct and continuation-style semantics [Reynolds '74], strict and lazy products, etc.