Flexible presentations of graded monads

Shin-ya Katsumata ${ }^{1} \quad$ Dylan McDermott ${ }^{2}$
Tarmo Uustalu ${ }^{2,3}$ Nicolas Wu4

${ }^{1}$ National Institute of Informatics, Japan
${ }^{2}$ Reykjavik University, Iceland
${ }^{3}$ Tallinn University of Technology, Estonia
${ }^{4}$ Imperial College London, UK

How can we model quantitative computational effects, where each computation M has a grade $d \in \mathbb{N}$?

$$
\frac{\Gamma \vdash V: A}{\Gamma \vdash \text { return } V: A \& 1}
$$

$$
\overline{\Gamma \vdash \text { fail }: A \& 0}
$$

$$
\frac{\Gamma \vdash M_{1}: A \& d_{1} \quad \Gamma \vdash M_{2}: A \& d_{2}}{\Gamma \vdash \operatorname{or}\left(M_{1}, M_{2}\right): A \&\left(d_{1}+d_{2}\right)}
$$

- e.g. to prove equations between terms

$$
\begin{gathered}
\operatorname{or}\left(\operatorname{or}\left(M_{1}, M_{2}\right), M_{3}\right) \equiv \operatorname{or}\left(M_{1}, \operatorname{or}\left(M_{2}, M_{3}\right)\right) \\
\operatorname{or}\left(M_{1}, M_{2}\right) \equiv M_{2} \quad\left(\text { if } \Gamma \vdash M_{1}: A \& 0\right)
\end{gathered}
$$

Models of effects from presentations

1. Monads model computational effects
[Moggi '89]
2. They often come from presentations
3. which induce algebraic operations
4. and provide semantics for effect handlers
[Plotkin and Power '02]
[Plotkin and Power '03]
[Plotkin and Pretnar '09]

Example:

1. Nondeterminism can be modelled using the free monoid monad List
2. which comes from the presentation of monoids

$$
\begin{array}{cl}
\mathrm{m}: 2 & \mathrm{u}: 0 \\
\mathrm{~m}(\mathrm{~m}(x, y), z) \equiv \mathrm{m}(x, \mathrm{~m}(y, z)) & \mathrm{m}(\mathrm{u}, x) \equiv x \equiv \mathrm{~m}(x, \mathrm{u})
\end{array}
$$

3. which also induces algebraic operations

$$
\text { fail }_{X}=\llbracket \mathrm{u} \rrbracket: \mathbf{1} \rightarrow \operatorname{List} X \quad \text { or }_{X}=\llbracket \mathrm{m} \rrbracket: \text { List } X \times \text { List } X \rightarrow \text { List } X
$$

Presentations of monads

Presentation (Σ, E):
operations op : n from Σ

+ equations $t \equiv u$ from E

Presentation of monoids:

$$
\begin{array}{cc}
\mathrm{m}: 2 & \mathrm{u}: 0 \\
\mathrm{~m}(\mathrm{u}, x) \equiv x & x \equiv \mathrm{~m}(x, \mathrm{u}) \\
\mathrm{m}(\mathrm{~m}(x, y), z) & \equiv \mathrm{m}(x, \mathrm{~m}(y, z))
\end{array}
$$

Presentations of monads

Presentation (Σ, E):
operations op : n from Σ

+ equations $t \equiv u$ from E

Algebra:

carrier set A with functions $\llbracket \mathrm{op} \rrbracket: A^{n} \rightarrow A$ satisfying equations

Presentation of monoids:

$$
\begin{array}{rc}
\mathrm{m}: 2 & \mathrm{u}: 0 \\
\mathrm{~m}(\mathrm{u}, x) \equiv x & x \equiv \mathrm{~m}(x, \mathrm{u}) \\
\mathrm{m}(\mathrm{~m}(x, y), z) \equiv \mathrm{m}(x, \mathrm{~m}(y, z))
\end{array}
$$

Monoid:

carrier set A with
functions $\llbracket u \rrbracket: 1 \rightarrow A, \llbracket m \rrbracket: A \times A \rightarrow A$ satisfying unit and associativity eqns

Presentations of monads

Presentation (Σ, E):
operations op : n from Σ

+ equations $t \equiv u$ from E

Algebra:

carrier set A with functions $\llbracket \mathrm{op} \rrbracket: A^{n} \rightarrow A$ satisfying equations

Free algebra on X :
algebra ($T X, \llbracket-\rrbracket$) with function $\eta_{X}: X \rightarrow T X$
satisfying universal property

Presentation of monoids:

$$
\begin{array}{rc}
\mathrm{m}: 2 & \mathrm{u}: 0 \\
\mathrm{~m}(\mathrm{u}, x) \equiv x & x \equiv \mathrm{~m}(x, \mathrm{u}) \\
\mathrm{m}(\mathrm{~m}(x, y), z) \equiv \mathrm{m}(x, \mathrm{~m}(y, z))
\end{array}
$$

Monoid:

carrier set A with
functions $\llbracket u \rrbracket: 1 \rightarrow A, \llbracket m \rrbracket: A \times A \rightarrow A$
satisfying unit and associativity eqns

Free monoid on X :
monoid (List X, fail, or) with
singleton function $X \rightarrow$ List X
satisfying universal property

Presentations of monads

Presentation (Σ, E):
operations op : n from Σ

+ equations $t \equiv u$ from E

Algebra:

carrier set A with functions $\llbracket \mathrm{op} \rrbracket: A^{n} \rightarrow A$ satisfying equations

Free algebra on X :
algebra ($T X, \llbracket-\rrbracket$) with function $\eta_{X}: X \rightarrow T X$ satisfying universal property

Free algebra monad T : has the same algebras as the presentation

Presentation of monoids:

$$
\begin{array}{rc}
\mathrm{m}: 2 & \mathrm{u}: 0 \\
\mathrm{~m}(\mathrm{u}, x) \equiv x & x \equiv \mathrm{~m}(x, \mathrm{u}) \\
\mathrm{m}(\mathrm{~m}(x, y), z) \equiv \mathrm{m}(x, \mathrm{~m}(y, z))
\end{array}
$$

Monoid:

carrier set A with
functions $\llbracket u \rrbracket: 1 \rightarrow A, \llbracket m \rrbracket: A \times A \rightarrow A$
satisfying unit and associativity eqns

Free monoid on X :
monoid (List X, fail, or) with
singleton function $X \rightarrow$ List X
satisfying universal property

Free monoid monad List:
has monoids as algebras

Models of quantitative effects from graded presentations

1. Nondeterminism can be modelled using a graded monad List

$$
\text { List } X=\text { the free graded monoid on the set } X
$$

2. which comes from a graded presentation of monoids?
3. which induces graded algebraic operations?

$$
\begin{aligned}
& \text { or }_{d_{1}, d_{2}, X}: \operatorname{List} X d_{1} \times \operatorname{List} X d_{2} \rightarrow \operatorname{List} X\left(d_{1}+d_{2}\right) \quad\left(d_{1}, d_{2} \in \mathbb{N}\right) \\
& \quad \text { fail }_{X}: 1 \rightarrow \operatorname{List} X 0
\end{aligned}
$$

$$
\overline{\Gamma \vdash \text { fail }: A \& 0} \quad \frac{\Gamma \vdash M_{1}: A \& d_{1} \quad \Gamma \vdash M_{2}: A \& d_{2}}{\Gamma \vdash \operatorname{or}\left(M_{1}, M_{2}\right): A \&\left(d_{1}+d_{2}\right)}
$$

The existing notions of graded presentation [Smirnov '08, Milius et al. '15, Dorsch et al. '19, Kura '20] are not general enough to do this

This work

Develop a notion of flexibly graded presentation

- Every flexibly graded presentation (Σ, E) induces
- a canonical graded monad $\mathrm{T}_{(\Sigma, E)}$
- along with a flexibly graded algebraic operation for each operation of the presentation
- Examples like List have computationally natural flexibly graded presentations
- The constructions are mathematically justified by locally graded categories, and a notion of flexibly graded abstract clone

Algebras

Algebraic structures form concrete categories ($\mathbb{C}, U: \mathbb{C} \rightarrow$ Set $)$, consisting of:

1. a collection of objects $|\mathbb{C}|$;
2. for each object $A \in \mathbb{C}$, a carrier set $U A$
3. for each $\mathrm{A}, \mathrm{B} \in \mathrm{A}$, a set $\mathbb{C}(\mathrm{A}, \mathrm{B})$ of functions $f: U \mathrm{~A} \rightarrow U \mathrm{~B}$, called homomorphisms $f: \mathrm{A} \rightarrow \mathrm{B}$;
4. such that homomorphisms are closed under identities and composition

$$
\begin{gathered}
\operatorname{id}_{U A}: \mathrm{A} \rightarrow \mathrm{~A} \\
(g \circ f): \mathrm{A}_{1} \rightarrow \mathrm{~A}_{3} \text { for } f: \mathrm{A}_{1} \rightarrow \mathrm{~A}_{2}, g: \mathrm{A}_{2} \rightarrow \mathrm{~A}_{3}
\end{gathered}
$$

Examples:

- monoids $\mathrm{A}=(A, \mathrm{~m}, \mathrm{u})$, with carrier $U \mathrm{~A}=A$, and monoid homomorphisms $f: \mathrm{A} \rightarrow \mathrm{B}$;
- also rings, groups, mnemoids, semilattices, ...

Algebras

An isomorphism

$$
I:(\mathbb{C}, U) \cong\left(\mathbb{C}^{\prime}, U^{\prime}\right)
$$

of concrete categories consists of

1. a bijection $I:|\mathbb{C}| \cong\left|\mathbb{C}^{\prime}\right|$;
2. such that $U(I A)=U A^{\prime}$ for all A , and

$$
f \in \mathbb{C}\left(\mathrm{~A}, \mathrm{~A}^{\prime}\right) \Leftrightarrow f \in \mathbb{C}^{\prime}\left(I \mathrm{~A}, I \mathrm{~A}^{\prime}\right)
$$

for all functions $f: U A \rightarrow U A^{\prime}$.

Presentation algebras

Fix a presentation (Σ, E) consisting of a set $\Sigma(n)$ of n-ary operations for each $n \in \mathbb{N}$, together with a collection of equations

- $\mathrm{A}(\Sigma, E)$-algebra $\mathrm{A}=(A, \llbracket-\rrbracket)$ is a carrier set $U_{(\Sigma, E)} \mathrm{A}=A$, together with interpretation functions

$$
\llbracket \mathrm{op} \rrbracket: A^{n} \rightarrow A \text { for each op } \in \Sigma(n)
$$

satisfying the equations

- (Σ, E) is a presentation of (\mathbb{C}, U) if

$$
(\mathbb{C}, U) \cong\left(\operatorname{Alg}(\Sigma, E), U_{(\Sigma, E)}\right)
$$

Examples:

- (Mon, U) has a presentation

$$
\begin{gathered}
\Sigma(0)=\{\mathrm{u}\} \quad \Sigma(2)=\{\mathrm{m}\} \quad \Sigma(n)=\emptyset \quad \text { otherwise } \\
\mathrm{m}(\mathrm{u}, x) \equiv x \equiv \mathrm{~m}(x, \mathrm{u}) \quad \mathrm{m}(\mathrm{~m}(x, y), z) \equiv \mathrm{m}(x, \mathrm{~m}(y, z))
\end{gathered}
$$

- also rings, groups, mnemoids, semilattices, ...

Monad algebras

- A monad T (in Kleisli form, on Set) consists of:
- a set $T X$ for each set X
- unit functions $\eta_{X}: X \rightarrow T X$
- Kleisli extension $\frac{f: X \rightarrow T Y}{f^{\dagger}: T X \rightarrow T Y}$
such that the monad laws hold:

$$
f^{\dagger} \circ \eta_{X}=f \quad\left(\eta_{X}\right)^{\dagger}=\operatorname{id}_{T X} \quad\left(g^{\dagger} \circ f\right)^{\dagger}=g^{\dagger} \circ f^{\dagger}
$$

- A T-algebra $\mathrm{A}=\left(A,(-)^{\ddagger}\right)$ is a carrier set $U_{\mathrm{T}} \mathrm{A}=A$, together with an extension operation $\frac{f: X \rightarrow A}{f^{\ddagger}: T X \rightarrow A}$ such that $f^{\dagger} \circ \eta_{X}=f,\left(g^{\dagger} \circ f\right)^{\ddagger}=g^{\ddagger} \circ f^{\dagger}$
(\mathbb{C}, U) is monadic if $(\mathbb{C}, U) \cong\left(\operatorname{Alg}(\mathrm{T}), U_{\mathrm{T}}\right)$ for some (unique) monad T

Algebraic structures are monadic

If (\mathbb{C}, U) is any algebraic structure that has a presentation (Σ, E)

- e.g. monoids, rings, groups, arithmoids, semilattices, ... then (\mathbb{C}, U) is monadic:

Theorem
For a concrete category (\mathbb{C}, U), the following are equivalent:

1. (\mathbb{C}, U) has a presentation (Σ, E);
2. (\mathbb{C}, U) is monadic, and the monad T is finitary.

Grading

Definition

A $\left(\mathbb{N}_{\leq}-\right)$graded set $X: \mathbb{N}_{\leq} \rightarrow$ Set consists of:

- a set $X d$ for each $d \in \mathbb{N}$
- a function $X\left(d \leq d^{\prime}\right): X d \rightarrow X d^{\prime}$ for each $d \leq d^{\prime} \in \mathbb{N}$ such that $X(d \leq d)=$ id and $X\left(d^{\prime} \leq d^{\prime \prime}\right) \circ X\left(d \leq d^{\prime}\right)=X\left(d \leq d^{\prime \prime}\right)$. A morphism $f: X-e \rightarrow Y$ of grade $e \in \mathbb{N}$ is a natural family of functions

$$
f_{d}: X d \rightarrow Y(d \cdot e)
$$

Identities have grade 1, composition multiplies grades, and we can coerce a morphism to a larger grade:

$$
\begin{aligned}
\operatorname{id}_{X}: X-1 \rightarrow X & \\
(g \circ f): X_{1}-e \cdot e^{\prime} \rightarrow X_{3} & \text { for } f: X_{1}-e \rightarrow X_{2}, g: X_{2}-e^{\prime} \rightarrow X_{3} \\
\left(e \leq e^{\prime}\right)^{*} f: X-e^{\prime} \rightarrow Y & \text { for } f: X-e \rightarrow Y \\
& \text { where }\left(\left(e \leq e^{\prime}\right)^{*} f\right)_{d} x=Y\left(d \cdot e \leq d \cdot e^{\prime}\right)\left(f_{d} x\right)
\end{aligned}
$$

so we get a locally graded category [Wood '76] of graded sets

Grading

- For each (ungraded) set X, there is a graded set List X :
- List $X d$ is lists over X of length $\leq d$
- List $X\left(d \leq d^{\prime}\right)$ is the inclusion List $X d \subseteq \operatorname{List} X d^{\prime}$ and morphism dup : List $X-2 \rightarrow \operatorname{List} X$

$$
\begin{aligned}
& \operatorname{dup}_{d}: \operatorname{List} X d \rightarrow \operatorname{List} X(d \cdot 2) \\
& \operatorname{dup}_{d}\left[x_{1}, x_{2}, \ldots, x_{k}\right]=\left[x_{1}, x_{1}, x_{2}, x_{2}, \ldots, x_{k}, x_{k}\right]
\end{aligned}
$$

- Every (ungraded) set X forms a graded set $K X$ such that morphisms $f: K X-e \rightarrow Y$ are equivalently functions $f_{1}: X \rightarrow Y e:$

$$
K X d= \begin{cases}X & \text { if } d \geq 1 \\ \emptyset & \text { otherwise }\end{cases}
$$

Graded algebraic structures

A graded monoid $\mathrm{A}=(A, m, u)$ consists of:

- a graded set A (the carrier)
- multiplication functions $m_{d_{1}, d_{2}}: A d_{1} \times A d_{2} \rightarrow A\left(d_{1}+d_{2}\right)$ natural in $d_{1}, d_{2} \in \mathbb{N}_{\leq}$
- a unit $u \in A 0$
such that

$$
\begin{gathered}
m_{0, d}(u, x)=x=m_{d, 0}(x, u) \\
m_{d_{1}+d_{2}, d_{3}}\left(m_{d_{1}, d_{2}}(x, y), z\right)=m_{d_{1}, d_{2}+d_{3}}\left(x, m_{d_{2}, d_{3}}(y, z)\right)
\end{gathered}
$$

A morphism $f: \mathrm{A}-e \rightarrow \mathrm{~B}$ of grade e is a graded set morphism $f: A-e \rightarrow B$ such that

$$
f_{d_{1}+d_{2}}\left(m_{d_{1}, d_{2}}\left(x_{1}, x_{2}\right)\right)=m_{d_{1} \cdot e, d_{2} \cdot e}\left(f_{d_{1}} x_{1}, f_{d_{2}} x_{2}\right) \quad f_{0} \mathrm{u}=\mathrm{u}
$$

Example: the free graded monoid on a set X is

- graded set List X, with
- concatenation of lists List $X d_{1} \times \operatorname{List} X d_{2} \rightarrow \operatorname{List} X\left(d_{1}+d_{2}\right)$
- the empty list [] $\in \operatorname{List} X 0$

Graded algebraic structures

Graded algebraic structures form concrete locally graded categories ($C, U: C \rightarrow$ GSet), consisting of:

1. a collection of objects $|C|$;
2. for each object $\mathrm{A} \in C$, a carrier graded set $U A$
3. for each $\mathrm{A}, \mathrm{B} \in \mathrm{A}$, and grade e, a set $\mathcal{C}(\mathrm{A}, \mathrm{B}) e$ of morphisms $f: U \mathrm{~A}-e \rightarrow U \mathrm{~B}$, the morphisms $f: \mathrm{A}-e \rightarrow \mathrm{~B}$ of grade e;
4. such that morphisms are closed under identities, composition, and coercions

$$
\begin{aligned}
& \mathrm{id}_{U A}: \mathrm{A}-1 \rightarrow \mathrm{~A} \\
& (g \circ f): \mathrm{A}_{1}-e \cdot e^{\prime} \rightarrow \mathrm{A}_{3} \text { for } f: \mathrm{A}_{1}-e \rightarrow \mathrm{~A}_{2}, g: \mathrm{A}_{2}-e^{\prime} \rightarrow \mathrm{A}_{3} \\
& \left(e \leq e^{\prime}\right) f^{*}: \mathrm{A}-e^{\prime} \rightarrow \mathrm{B} \text { for } e \leq e^{\prime}, f: \mathrm{A}-e \rightarrow \mathrm{~B}
\end{aligned}
$$

Examples:

- graded monoids $\mathrm{A}=(A, \mathrm{~m}, \mathrm{u})$, with carrier $U \mathrm{~A}=A$;
- also graded rings, graded modules, ...

Graded presentations
 [Smirnov '08, Milius et al. '15, Dorsch et al. '19, Kura '20]

Fix a (rigidly) graded presentation (Σ, E) consisting of a set $\Sigma(n, d)$ of n-ary operations of grade d for each $n, d \in \mathbb{N}$, together with a collection of equations

- $\mathrm{A}(\Sigma, E)$-algebra $\mathrm{A}=(A, \llbracket-\rrbracket)$ is a graded set $U_{(\Sigma, E)} \mathrm{A}=A$, together with interpretation functions

$$
\llbracket \mathrm{op} \rrbracket_{e}:(A e)^{n} \rightarrow A(d \cdot e) \text { for each op } \in \Sigma(n, d)
$$

satisfying the equations

- (Σ, E) is a presentation of (C, U) if

$$
(C, U) \cong\left(\operatorname{Alg}(\Sigma, E), U_{(\Sigma, E)}\right)
$$

Graded monads

[Borceux, Janelidze, Kelly '05; Smirnov '08; Melliès '12; Katsumata '14]

- A graded monad T consists of:
- a graded set $T X$ for each (ungraded) set X
- unit functions $\eta_{X}: X \rightarrow T X 1$
- Kleisli extension $\frac{f: X \rightarrow T Y e}{f_{d}^{\dagger}: T X d \rightarrow T Y(d \cdot e)}$ natural in d, e
such that the monad laws hold:

$$
f_{1}^{\dagger} \circ \eta_{X}=f \quad\left(\eta_{X}\right)_{d}^{\dagger}=\operatorname{id}_{T X d} \quad\left(g_{e}^{\dagger} \circ f\right)_{d}^{\dagger}=g_{d \cdot e}^{\dagger} \circ f_{d}^{\dagger}
$$

Example: the graded monad List has

- graded set List X for each set X
- singleton functions $X \rightarrow$ List $X 1$
- $f_{d}^{\dagger}\left[x_{1}, \ldots, x_{k}\right]=f x_{1}+\cdots+f x_{k}$

Graded monads

[Borceux, Janelidze, Kelly '05; Smirnov '08; Melliès '12; Katsumata '14]

- A graded monad T consists of:
- a graded set $T X$ for each (ungraded) set X
- unit functions $\eta_{X}: X \rightarrow T X 1$
- Kleisli extension $\frac{f: X \rightarrow T Y e}{f_{d}^{\dagger}: T X d \rightarrow T Y(d \cdot e)}$ natural in d, e such that the monad laws hold:

$$
f_{1}^{\dagger} \circ \eta_{X}=f \quad\left(\eta_{X}\right)_{d}^{\dagger}=\operatorname{id}_{T X d} \quad\left(g_{e}^{\dagger} \circ f\right)_{d}^{\dagger}=g_{d \cdot e}^{\dagger} \circ f_{d}^{\dagger}
$$

- A T-algebra $\mathrm{A}=\left(A,(-)^{\ddagger}\right)$ is a graded set $U_{\mathrm{T}} \mathrm{A}=A$, with an extension operation
(C, U) is graded monadic if $(C, U) \cong\left(\operatorname{Alg}(\mathrm{T}), U_{\mathrm{T}}\right)$ for some (unique) graded monad T

The problem with graded monads

Graded monoids are not graded monadic, hence do not have a rigidly graded presentation

There is a concrete functor

satisfying a universal property, but it is not an isomorphism
Similarly for graded rings, ...
(but graded modules have a rigidly graded presentation)

Graded presentations are too rigid

Each operation op $\in \Sigma(n, d)$ is interpreted as

$$
\llbracket \mathrm{op} \rrbracket_{e}:(A e)^{n} \rightarrow A(d \cdot e)
$$

but we want

$$
\mathrm{m}_{d_{1}, d_{2}}: A d_{1} \times A d_{2} \rightarrow A\left(d_{1}+d_{2}\right)
$$

This work

Develop a notion of flexibly graded presentation

- Every flexibly graded presentation (Σ, E) induces
- a canonical graded monad $\mathrm{T}_{(\Sigma, E)}$
- along with a flexibly graded algebraic operation for each operation of the presentation
- Examples like List have computationally natural flexibly graded presentations
- The constructions are mathematically justified by locally graded categories, and a notion of flexibly graded abstract clone

Flexibly graded presentations

A flexibly graded presentation (Σ, E) consists of

- a signature Σ : sets

$$
\Sigma\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right)
$$

of operations

$$
\frac{e \in \mathbb{N} \quad \Gamma \vdash t_{1}: d_{1}^{\prime} \cdot e \cdots \quad \Gamma \vdash t_{n}: d_{n}^{\prime} \cdot e}{\Gamma \vdash \operatorname{op}\left(e ; t_{1}, \ldots, t_{n}\right): d \cdot e}
$$

such as $\mathrm{m}_{d_{1}, d_{2}} \in E\left(d_{1}, d_{2} ;\left(d_{1}+d_{2}\right)\right)$

- a collection of axioms E : sets

$$
E\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right)
$$

of equations

$$
x_{1}: d_{1}^{\prime}, \ldots, x_{n}: d_{n}^{\prime} \vdash t \equiv u: d
$$

such as

$$
\mathrm{m}_{d_{1}+d_{2}, d_{3}}\left(1 ; \mathrm{m}_{d_{1}, d_{2}}(1 ; x, y), z\right) \equiv \mathrm{m}_{d_{1}, d_{2}+d_{3}}\left(1 ; x, \mathrm{~m}_{d_{2}, d_{3}}(1 ; y, z)\right)
$$

Semantics

For every flexibly graded presentation (Σ, E), there is:

- a notion of (Σ, E)-algebra, forming a locally graded category $\operatorname{Alg}(\Sigma, E)$

A (Σ, E)-algebra $(A, \llbracket-\rrbracket)$ is:

- a graded set A
- with an interpretation

$$
\llbracket \mathrm{op} \rrbracket_{e}: \prod_{i} A\left(d_{i}^{\prime} \cdot e\right) \rightarrow A(d \cdot e) \quad \text { natural in } e
$$

of each op $\in \Sigma\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right)$

- satisfying each axiom $t \equiv u$ of E :

$$
\llbracket t \rrbracket_{e}=\llbracket u \rrbracket_{e} \quad \text { for every } e
$$

Semantics

For every flexibly graded presentation (Σ, E), there is:

- a notion of (Σ, E)-algebra, forming a locally graded category $\operatorname{Alg}(\Sigma, E)$
- a sound and complete equational logic
$\Gamma \vdash t \equiv u: d$ generated by

$$
\frac{(t, u) \in E\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right) \quad \Gamma \vdash s_{1}: d_{1}^{\prime} \cdot e \quad \cdots \quad \Gamma \vdash s_{n}: d_{n}^{\prime} \cdot e}{\Gamma \vdash t\left\{e ; x_{1} \mapsto s_{1}, \ldots, x_{n} \mapsto s_{n}\right\} \equiv u\left\{e ; x_{1} \mapsto s_{1}, \ldots, x_{n} \mapsto s_{n}\right\}: d \cdot e}
$$

and some other rules
Soundness and completeness:

$$
\llbracket t \rrbracket=\llbracket u \rrbracket \text { in every }(\Sigma, E) \text {-algebra } \quad \Leftrightarrow \quad \Gamma \vdash t \equiv u: d \text { is derivable }
$$

Semantics

For every flexibly graded presentation (Σ, E), there is:

- a notion of (Σ, E)-algebra, forming a locally graded category $\operatorname{Alg}(\Sigma, E)$
- a sound and complete equational logic
- a graded monad $\mathrm{T}_{(\Sigma, E)}$ on Set and concrete functor $R_{(\Sigma, E)}: \operatorname{Alg}(\Sigma, E) \rightarrow \operatorname{Alg}\left(\mathrm{T}_{(\Sigma, E)}\right)$, with a universal property

For every graded monad T^{\prime} and concrete functor R^{\prime} :

$$
\operatorname{Alg}(\Sigma, E) \rightarrow \operatorname{Alg}\left(\mathrm{T}^{\prime}\right):
$$

$$
\underset{\sim}{\operatorname{Alg}(\Sigma, E) \xrightarrow{R_{(\Sigma, E)}}} \operatorname{Alg} \underset{\operatorname{Rlg}\left(\mathrm{T}^{\prime}\right)}{\left.\downarrow_{(\Sigma, E)}\right)}
$$

(But $R_{(\Sigma, E)}$ is usually not an isomorphism)

Semantics

For every flexibly graded presentation (Σ, E), there is:

- a notion of (Σ, E)-algebra, forming a locally graded category $\operatorname{Alg}(\Sigma, E)$
- a sound and complete equational logic
- a graded monad $\mathrm{T}_{(\Sigma, E)}$ on Set and concrete functor $R_{(\Sigma, E)}: \operatorname{Alg}(\Sigma, E) \rightarrow \operatorname{Alg}\left(\mathrm{T}_{(\Sigma, E)}\right)$, with a universal property
- for every op in Σ, a flexibly graded algebraic operation

For op $\in \Sigma\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right)$:

$$
\alpha_{\mathrm{op}, X, e}: \prod_{i} T_{(\Sigma, E)} X\left(d_{i}^{\prime} \cdot e\right) \rightarrow T_{(\Sigma, E)} X(d \cdot e)
$$

natural in e, and compatible with Kleisli extension
(Because each free $\mathrm{T}_{(\Sigma, E) \text {-algebra }} T_{(\Sigma, E)} X$ forms a ($\left.\Sigma, E\right)$-algebra)

Semantics

For every flexibly graded presentation (Σ, E), there is:

- a notion of (Σ, E)-algebra, forming a locally graded category $\operatorname{Alg}(\Sigma, E)$
- a sound and complete equational logic
- a graded monad $T_{(\Sigma, E)}$ on Set and concrete functor $R_{(\Sigma, E)}: \operatorname{Alg}(\Sigma, E) \rightarrow \operatorname{Alg}\left(\mathrm{T}_{(\Sigma, E)}\right)$, with a universal property
- for every op in Σ, a flexibly graded algebraic operation

A large class of graded monads have flexibly graded presentations:

- exactly the finitary graded monads on Set
- correspondence goes via flexibly graded clones

Graded monads we care about have natural flexibly graded presentations

Summary

Given a flexibly graded presentation (Σ, E), there is

- a graded monad $T_{(\Sigma, E)}$
- with a $\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right)$-ary algebraic operation

$$
\llbracket \mathrm{op} \rrbracket_{X, e}: \prod_{i} T_{(\Sigma, E)} X\left(d_{i}^{\prime} \cdot e\right) \rightarrow T_{(\Sigma, E)} X(d \cdot e)
$$

for each op $\in \Sigma\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right)$ (satisfying equations)

- that is in some sense canonical, even if it does not quite capture (Σ, E)-algebras

Details are in the papers:

- Dylan McDermott and Tarmo Uustalu, Flexibly graded monads and graded algebras, MPC 2022
- Shin-ya Katsumata, Dylan McDermott, Tarmo Uustalu and Nicolas Wu, Flexible presentations of graded monads, ICFP 2022

Constructing $T_{(\Sigma, E)}$

flexibly graded presentations
$(\Sigma, E) \mapsto \operatorname{Tm}_{(\Sigma, E)} \downarrow$
flexibly graded clones
left Kan extension
FCtx \rightarrow GSet \downarrow
flexibly graded monads
compose with $K:$ RSet \rightarrow GSet graded monads
$=$ sets of terms, with variables and sub
$=$ monad on GSet

Constructing $T_{(\Sigma, E)}$

algebraic theories and relative monads are closely connected (jww Nathanael Arkor)
flexibly graded presentations
$(\Sigma, E) \mapsto \operatorname{Tm}_{(\Sigma, E)} \downarrow \simeq$
flexibly graded clones
$\underset{\underset{\text { FCtx } \rightarrow \text { GSet }}{\text { left }}}{\text { Kan extension }}$ along $\downarrow \simeq \simeq \begin{gathered}\text { compose with } \\ \text { FCtx } \rightarrow \text { GSet }\end{gathered}$
flexibly graded monads preserving conical sifted colimits

$$
\uparrow \dashv \downarrow \begin{gathered}
\text { compose with } \\
K: \text { RSet } \rightarrow \text { GSet }
\end{gathered}
$$

graded monads
preserving conical sifted colimits
$=($ FCtx \rightarrow GSet $)$-relative monad
monad on GSet
preserving conical sifted colimits
$=\begin{gathered}\text { K-relative monad } \\ \text { preserving conical sifted colimits }\end{gathered}$

Monads as models of computational effects

Let T be the monad that arises from a presentation (Σ, E). Then:

- an element $t \in T X$ can be thought of as a computation over X
- the unit functions $\eta_{X}: X \rightarrow T X$ provide trivial computations
- the Kleisli extension functions $(X \rightarrow T Y) \rightarrow(T X \rightarrow T Y)$ provide sequencing of computations
- the interpretation functions

$$
\llbracket \mathrm{op} \rrbracket:(T X)^{n} \rightarrow T X \quad \text { where }(\mathrm{op}: n) \in \Sigma
$$

provide effectful operations
Example: if (Σ, E) is the presentation of monoids, then

- a computation $t \in T X=\operatorname{List} X$ is a list of alternatives;
- $T X=\operatorname{List} X$ is a monoid, with unit $\llbracket u \rrbracket: 1 \rightarrow$ List X the empty list multiplication $\llbracket \mathrm{m} \rrbracket: \operatorname{List} X \times \operatorname{List} X \rightarrow \operatorname{List} X$ concatenation of lists

