Flexible presentations of graded monads

Shin-ya Katsumata¹ Dylan McDermott² Tarmo Uustalu^{2,3} Nicolas Wu⁴

- ¹ National Institute of Informatics, Japan ² Reykjavik University, Iceland
- ³ Tallinn University of Technology, Estonia
 ⁴ Imperial College London, UK

How can we model quantitative computational effects, where each computation M has a grade $d \in \mathbb{N}$?

$$\frac{\Gamma \vdash V : A}{\Gamma \vdash \operatorname{return} V : A \& 1}$$

$$\frac{\Gamma \vdash fail : A \& 0}{\Gamma \vdash \operatorname{fail} : A \& 0} \qquad \frac{\Gamma \vdash M_1 : A \& d_1 \qquad \Gamma \vdash M_2 : A \& d_2}{\Gamma \vdash \operatorname{or}(M_1, M_2) : A \& (d_1 + d_2)}$$

e.g. to prove equations between terms

or(or(
$$M_1, M_2$$
), M_3) \equiv or(M_1 , or(M_2, M_3))
or(M_1, M_2) \equiv M_2 (if $\Gamma \vdash M_1 : A \& 0$)

Models of effects from presentations

- 1. Monads model computational effects
- 2. They often come from presentations
- 3. which induce algebraic operations
- 4. and provide semantics for effect handlers

[Moggi '89] [Plotkin and Power '02] [Plotkin and Power '03] [Plotkin and Pretnar '09]

Example:

- 1. Nondeterminism can be modelled using the free monoid monad List
- 2. which comes from the presentation of monoids

$$m:2 \qquad u:0$$

$$m(m(x,y),z) \equiv m(x,m(y,z)) \qquad m(u,x) \equiv x \equiv m(x,u)$$

3. which also induces algebraic operations

 $\operatorname{fail}_X = \llbracket u \rrbracket : 1 \to \operatorname{List} X \qquad \operatorname{or}_X = \llbracket m \rrbracket : \operatorname{List} X \times \operatorname{List} X \to \operatorname{List} X$

Presentation (Σ, E) : operations op : *n* from Σ

+ equations $t \equiv u$ from E

Presentation of monoids:

$$\begin{split} \mathbf{m} &: 2 \quad \mathbf{u} : 0 \\ \mathbf{m}(\mathbf{u}, x) &\equiv x \quad x \equiv \mathbf{m}(x, \mathbf{u}) \\ \mathbf{m}(\mathbf{m}(x, y), z) &\equiv \mathbf{m}(x, \mathbf{m}(y, z)) \end{split}$$

Presentation (Σ, E) : operations op : *n* from Σ

+ equations $t \equiv u$ from E

Algebra:

carrier set A with functions $\llbracket op \rrbracket : A^n \to A$ satisfying equations

Presentation of monoids:

$$\begin{split} \mathbf{m} &: 2 \quad \mathbf{u} : 0\\ \mathbf{m}(\mathbf{u}, x) &\equiv x \quad x \equiv \mathbf{m}(x, \mathbf{u})\\ \mathbf{m}(\mathbf{m}(x, y), z) &\equiv \mathbf{m}(x, \mathbf{m}(y, z)) \end{split}$$

Monoid:

carrier set A with functions $\llbracket u \rrbracket : 1 \rightarrow A$, $\llbracket m \rrbracket : A \times A \rightarrow A$ satisfying unit and associativity eqns

Presentation (Σ, E) : operations op : *n* from Σ

+ equations $t \equiv u$ from E

Algebra:

carrier set A with functions $\llbracket \operatorname{op} \rrbracket : A^n \to A$ satisfying equations

Free algebra on X: algebra $(TX, \llbracket - \rrbracket)$ with function $\eta_X : X \to TX$ satisfying universal property

Presentation of monoids:

$$\begin{split} \mathbf{m} &: 2 \quad \mathbf{u} : 0\\ \mathbf{m}(\mathbf{u}, x) &\equiv x \quad x \equiv \mathbf{m}(x, \mathbf{u})\\ \mathbf{m}(\mathbf{m}(x, y), z) &\equiv \mathbf{m}(x, \mathbf{m}(y, z)) \end{split}$$

Monoid:

carrier set A with functions $\llbracket u \rrbracket : 1 \to A$, $\llbracket m \rrbracket : A \times A \to A$ satisfying unit and associativity eqns

Free monoid on X:

monoid (List X, fail, or) with singleton function $X \rightarrow \text{List } X$ satisfying universal property

Presentation (Σ, E) : operations op : *n* from Σ

+ equations $t \equiv u$ from E

Algebra:

carrier set A with functions $\llbracket \operatorname{op} \rrbracket : A^n \to A$ satisfying equations

Free algebra on X: algebra $(TX, \llbracket - \rrbracket)$ with function $\eta_X : X \to TX$ satisfying universal property

Free algebra monad T:

has the same algebras as the presentation

Presentation of monoids:

Monoid:

carrier set A with functions $\llbracket u \rrbracket : 1 \to A$, $\llbracket m \rrbracket : A \times A \to A$ satisfying unit and associativity eqns

Free monoid on *X*:

monoid (List X, fail, or) with singleton function $X \rightarrow \text{List } X$ satisfying universal property

Free monoid monad List:

has monoids as algebras

Models of quantitative effects from graded presentations

1. Nondeterminism can be modelled using a graded monad List

List X = the free graded monoid on the set X

- 2. which comes from a graded presentation of monoids?
- 3. which induces graded algebraic operations?

$$\begin{array}{l} \operatorname{or}_{d_1,d_2,X} : \operatorname{List} X \, d_1 \times \operatorname{List} X \, d_2 \to \operatorname{List} X \, (d_1 + d_2) \qquad (d_1,d_2 \in \mathbb{N}) \\ \operatorname{fail}_X : \mathbf{1} \to \operatorname{List} X \, \mathbf{0} \end{array}$$

 $\frac{\Gamma \vdash \text{fail}: A \& \mathbf{0}}{\Gamma \vdash \text{fail}: A \& \mathbf{0}} \qquad \frac{\Gamma \vdash M_1 : A \& \mathbf{d}_1 \qquad \Gamma \vdash M_2 : A \& \mathbf{d}_2}{\Gamma \vdash \text{or}(M_1, M_2) : A \& (\mathbf{d}_1 + \mathbf{d}_2)}$

The existing notions of graded presentation [Smirnov '08, Milius et al. '15, Dorsch et al. '19, Kura '20] are not general enough to do this

This work

Develop a notion of flexibly graded presentation

- Every flexibly graded presentation (Σ, E) induces
 - ► a canonical graded monad $T_{(\Sigma,E)}$
 - along with a flexibly graded algebraic operation for each operation of the presentation
- Examples like List have computationally natural flexibly graded presentations
- The constructions are mathematically justified by locally graded categories, and a notion of flexibly graded abstract clone

Algebras

Algebraic structures form concrete categories $(\mathbb{C}, U : \mathbb{C} \to \text{Set})$, consisting of:

- 1. a collection of objects $|\mathbb{C}|$;
- 2. for each object $A \in \mathbb{C}$, a carrier set UA
- 3. for each A, B \in A, a set $\mathbb{C}(A, B)$ of functions $f : UA \rightarrow UB$, called homomorphisms $f : A \rightarrow B$;
- 4. such that homomorphisms are closed under identities and composition

$$\operatorname{id}_{UA} : \mathsf{A} \to \mathsf{A}$$

 $(g \circ f) : \mathsf{A}_1 \to \mathsf{A}_3 \text{ for } f : \mathsf{A}_1 \to \mathsf{A}_2, g : \mathsf{A}_2 \to \mathsf{A}_3$

Examples:

- monoids A = (A, m, u), with carrier UA = A, and monoid homomorphisms f: A → B;
- also rings, groups, mnemoids, semilattices, . . .

Algebras

An isomorphism

$$I: (\mathbb{C}, U) \cong (\mathbb{C}', U')$$

of concrete categories consists of

- 1. a bijection $I: |\mathbb{C}| \cong |\mathbb{C}'|;$
- 2. such that U(IA) = UA' for all A, and

$$f \in \mathbb{C}(\mathsf{A},\mathsf{A}') \quad \Leftrightarrow \quad f \in \mathbb{C}'(I\mathsf{A},I\mathsf{A}')$$

for all functions $f: UA \rightarrow UA'$.

Presentation algebras

Fix a presentation (Σ, E) consisting of a set $\Sigma(n)$ of *n*-ary operations for each $n \in \mathbb{N}$, together with a collection of equations

A (Σ, E)-algebra A = (A, [[−]]) is a carrier set U_(Σ,E)A = A, together with interpretation functions

$$\llbracket \operatorname{op} \rrbracket : A^n \to A \text{ for each op} \in \Sigma(n)$$

satisfying the equations

• (Σ, E) is a *presentation* of (\mathbb{C}, U) if

$$(\mathbb{C}, U) \cong (\operatorname{Alg}(\Sigma, E), U_{(\Sigma, E)})$$

Examples:

▶ (Mon, U) has a presentation

$$\begin{split} \Sigma(0) &= \{\mathsf{u}\} \qquad \Sigma(2) = \{\mathsf{m}\} \qquad \Sigma(n) = \emptyset \quad \text{otherwise} \\ \mathsf{m}(\mathsf{u}, x) &\equiv x \equiv \mathsf{m}(x, \mathsf{u}) \qquad \mathsf{m}(\mathsf{m}(x, y), z) \equiv \mathsf{m}(x, \mathsf{m}(y, z)) \end{split}$$

also rings, groups, mnemoids, semilattices, ...

Monad algebras

A monad T (in Kleisli form, on Set) consists of:

- \blacktriangleright a set TX for each set X
- unit functions $\eta_X : X \to TX$
- ► Kleisli extension $\frac{f: X \to TY}{f^{\dagger}: TX \to TY}$

such that the monad laws hold:

$$f^{\dagger} \circ \eta_X = f$$
 $(\eta_X)^{\dagger} = \mathrm{id}_{TX}$ $(g^{\dagger} \circ f)^{\dagger} = g^{\dagger} \circ f^{\dagger}$

► A T-algebra A = $(A, (-)^{\ddagger})$ is a carrier set $U_T A = A$, together with an extension operation $\frac{f: X \to A}{f^{\ddagger}: TX \to A}$ such that $f^{\dagger} \circ n_X = f. (a^{\dagger} \circ f)^{\ddagger} = a^{\ddagger} \circ f^{\dagger}$

 (\mathbb{C}, U) is *monadic* if $(\mathbb{C}, U) \cong (\operatorname{Alg}(\mathsf{T}), U_{\mathsf{T}})$ for some (unique) monad T

Algebraic structures are monadic

If (C, U) is any algebraic structure that has a presentation (Σ, E)
e.g. monoids, rings, groups, arithmoids, semilattices, ...
then (C, U) is monadic:

Theorem

For a concrete category (\mathbb{C}, U) , the following are equivalent:

- 1. (\mathbb{C}, U) has a presentation (Σ, E) ;
- 2. (\mathbb{C}, U) is monadic, and the monad T is finitary.

Grading

Definition

A $(\mathbb{N}_{\leq}-)$ graded set $X:\mathbb{N}_{\leq}\rightarrow$ Set consists of:

▶ a set Xd for each $d \in \mathbb{N}$

▶ a function $X(d \le d') : Xd \to Xd'$ for each $d \le d' \in \mathbb{N}$

such that $X(d \le d) = \text{id}$ and $X(d' \le d'') \circ X(d \le d') = X(d \le d'')$. A morphism $f: X - e \rightarrow Y$ of grade $e \in \mathbb{N}$ is a natural family of functions

$$f_d: Xd \to Y(d \cdot e)$$

Identities have grade 1, composition multiplies grades, and we can coerce a morphism to a larger grade:

so we get a locally graded category [Wood '76] of graded sets

Grading

▶ For each (ungraded) set *X*, there is a graded set List *X*:

- ListXd is lists over X of length $\leq d$
- List $X(d \le d')$ is the inclusion List $Xd \subseteq \text{List}Xd'$

and morphism dup : $ListX - 2 \rightarrow ListX$

$$dup_d : \text{List}Xd \rightarrow \text{List}X(d \cdot 2)$$
$$dup_d[x_1, x_2, \dots, x_k] = [x_1, x_1, x_2, x_2, \dots, x_k, x_k]$$

Every (ungraded) set X forms a graded set KX such that morphisms f : KX − e → Y are equivalently functions f₁ : X → Ye:
(X if d > 1

$$KXd = \begin{cases} X & \text{if } d \ge 1 \\ \emptyset & \text{otherwise} \end{cases}$$

Graded algebraic structures

A graded monoid A = (A, m, u) consists of:

- ► a graded set A (the carrier)
- ▶ multiplication functions $m_{d_1,d_2} : Ad_1 \times Ad_2 \rightarrow A(d_1 + d_2)$ natural in $d_1, d_2 \in \mathbb{N}_{\leq}$
- ▶ a unit $u \in A0$

such that

$$m_{0,d}(u,x) = x = m_{d,0}(x,u)$$
$$m_{d_1+d_2,d_3}(m_{d_1,d_2}(x,y),z) = m_{d_1,d_2+d_3}(x,m_{d_2,d_3}(y,z))$$

A morphism $f : A - e \rightarrow B$ of grade e is a graded set morphism $f : A - e \rightarrow B$ such that

$$f_{d_1+d_2}(m_{d_1,d_2}(x_1,x_2)) = m_{d_1 \cdot e,d_2 \cdot e}(f_{d_1}x_1,f_{d_2}x_2) \qquad f_0 u = u$$

Example: the free graded monoid on a set X is

- graded set ListX, with
- ▶ concatenation of lists $ListXd_1 \times ListXd_2 \rightarrow ListX(d_1 + d_2)$
- the empty list $[] \in \text{List}X0$

Graded algebraic structures

Graded algebraic structures form concrete locally graded categories $(C, U : C \rightarrow GSet)$, consisting of:

- 1. a collection of objects |C|;
- 2. for each object $A \in C$, a carrier graded set UA
- 3. for each A, B \in A, and grade *e*, a set C(A, B)e of morphisms $f: UA e \rightarrow UB$, the morphisms $f: A e \rightarrow B$ of grade *e*;
- 4. such that morphisms are closed under identities, composition, and coercions

$$\begin{split} & \operatorname{id}_{UA} : \mathsf{A} - 1 \to \mathsf{A} \\ & (g \circ f) : \mathsf{A}_1 - e \cdot e' \to \mathsf{A}_3 \quad \text{for } f : \mathsf{A}_1 - e \to \mathsf{A}_2, g : \mathsf{A}_2 - e' \to \mathsf{A}_3 \\ & (e \leq e')f^* : \mathsf{A} - e' \to \mathsf{B} \quad \text{for } e \leq e', f : \mathsf{A} - e \to \mathsf{B} \end{split}$$

Examples:

- graded monoids A = (A, m, u), with carrier UA = A;
- also graded rings, graded modules, ...

Graded presentations [Smirnov '08, Milius et al. '15, Dorsch et al. '19, Kura '20]

Fix a (rigidly) graded presentation (Σ, E) consisting of a set $\Sigma(n, d)$ of *n*-ary operations of grade *d* for each $n, d \in \mathbb{N}$, together with a collection of equations

A (Σ, E)-algebra A = (A, [[−]]) is a graded set U_(Σ,E)A = A, together with interpretation functions

 $\llbracket \operatorname{op} \rrbracket_e : (Ae)^n \to A(d \cdot e) \text{ for each op} \in \Sigma(n, d)$

satisfying the equations

•
$$(\Sigma, E)$$
 is a *presentation* of (C, U) if

 $(C, U) \cong (\operatorname{Alg}(\Sigma, E), U_{(\Sigma, E)})$

Graded monads

[Borceux, Janelidze, Kelly '05; Smirnov '08; Melliès '12; Katsumata '14]

A graded monad T consists of:

- a graded set TX for each (ungraded) set X
- ▶ unit functions $\eta_X : X \to TX1$ ▶ Kleisli extension $\frac{f: X \to TYe}{f_d^{\dagger}: TXd \to TY(d \cdot e)}$ natural in d, e

such that the monad laws hold:

$$f_1^{\dagger} \circ \eta_X = f$$
 $(\eta_X)_d^{\dagger} = \mathrm{id}_{TXd}$ $(g_e^{\dagger} \circ f)_d^{\dagger} = g_{d \cdot e}^{\dagger} \circ f_d^{\dagger}$

Example: the graded monad List has

- graded set ListX for each set X
- singleton functions $X \rightarrow \text{List}X1$

$$f_d^{\dagger}[x_1,\ldots,x_k] = fx_1 + \cdots + fx_k$$

Graded monads

[Borceux, Janelidze, Kelly '05; Smirnov '08; Melliès '12; Katsumata '14]

- A graded monad T consists of:
 - a graded set TX for each (ungraded) set X
 - ▶ unit functions $\eta_X : X \to TX1$ ▶ Kleisli extension $\frac{f: X \to TYe}{f_d^{\dagger}: TXd \to TY(d \cdot e)}$ natural in d, e

such that the monad laws hold:

$$f_1^{\dagger} \circ \eta_X = f$$
 $(\eta_X)_d^{\dagger} = \mathrm{id}_{TXd}$ $(g_e^{\dagger} \circ f)_d^{\dagger} = g_{d\cdot e}^{\dagger} \circ f_d^{\dagger}$

► A T-algebra A = $(A, (-)^{\ddagger})$ is a graded set $U_T A = A$, with an extension operation

(C,U) is graded monadic if $(C,U)\cong(Alg(\mathsf{T}),U_\mathsf{T})$ for some (unique) graded monad T

The problem with graded monads

Graded monoids are not graded monadic, hence do not have a rigidly graded presentation

There is a concrete functor

satisfying a universal property, but it is not an isomorphism

Similarly for graded rings, ... (but graded modules have a rigidly graded presentation)

Graded presentations are too rigid

Each operation op $\in \Sigma(n, d)$ is interpreted as

$$\llbracket \operatorname{op} \rrbracket_e : (Ae)^n \to A(d \cdot e)$$

but we want

$$\mathsf{m}_{d_1,d_2}: Ad_1 \times Ad_2 \to A(d_1 + d_2)$$

This work

Develop a notion of flexibly graded presentation

- Every flexibly graded presentation (Σ, E) induces
 - ► a canonical graded monad $T_{(\Sigma,E)}$
 - along with a flexibly graded algebraic operation for each operation of the presentation
- Examples like List have computationally natural flexibly graded presentations
- The constructions are mathematically justified by locally graded categories, and a notion of flexibly graded abstract clone

Flexibly graded presentations

A flexibly graded presentation (Σ, E) consists of

a signature Σ: sets

$$\Sigma(d'_1,\ldots,d'_n;d)$$

of operations

$$\frac{e \in \mathbb{N} \quad \Gamma \vdash t_1 : d'_1 \cdot e \quad \cdots \quad \Gamma \vdash t_n : d'_n \cdot e}{\Gamma \vdash \operatorname{op}(e; t_1, \dots, t_n) : d \cdot e}$$

such as
$$m_{d_1,d_2} \in E(d_1, d_2; (d_1 + d_2))$$

• a collection of axioms E: sets $E(d'_1, \ldots, d'_n; d)$

$$x_1:d'_1,\ldots,x_n:d'_n\vdash t\equiv u:d$$

such as

$$\mathsf{m}_{d_1+d_2,d_3}(1;\mathsf{m}_{d_1,d_2}(1;x,y),z) \equiv \mathsf{m}_{d_1,d_2+d_3}(1;x,\mathsf{m}_{d_2,d_3}(1;y,z))$$

For every flexibly graded presentation (Σ, E) , there is:

► a notion of (Σ, E) -algebra, forming a locally graded category Alg (Σ, E)

A
$$(\Sigma, E)$$
-algebra $(A, \llbracket - \rrbracket)$ is:
• a graded set A
• with an interpretation
 $\llbracket [op \rrbracket_e : \prod_i A(d'_i \cdot e) \to A(d \cdot e)$ natural in e
of each op $\in \Sigma(d'_1, \dots, d'_n; d)$
• satisfying each axiom $t \equiv u$ of E :
 $\llbracket t \rrbracket_e = \llbracket u \rrbracket_e$ for every e

For every flexibly graded presentation (Σ, E) , there is:

- ► a notion of (Σ, E) -algebra, forming a locally graded category $Alg(\Sigma, E)$
- a sound and complete equational logic

$$\Gamma \vdash t \equiv u : d \text{ generated by}$$

$$\frac{(t, u) \in E(d'_1, \dots, d'_n; d) \quad \Gamma \vdash s_1 : d'_1 \cdot e \quad \dots \quad \Gamma \vdash s_n : d'_n \cdot e}{\Gamma \vdash t\{e; x_1 \mapsto s_1, \dots, x_n \mapsto s_n\} \equiv u\{e; x_1 \mapsto s_1, \dots, x_n \mapsto s_n\} : d \cdot e}$$
and some other rules
Soundness and completeness:

 $\llbracket t \rrbracket = \llbracket u \rrbracket$ in every (Σ, E) -algebra $\Leftrightarrow \Gamma \vdash t \equiv u : d$ is derivable

For every flexibly graded presentation (Σ, E) , there is:

- ► a notion of (Σ, E) -algebra, forming a locally graded category $Alg(\Sigma, E)$
- a sound and complete equational logic
- ► a graded monad $T_{(\Sigma,E)}$ on Set and concrete functor $R_{(\Sigma,E)} : Alg(\Sigma, E) \rightarrow Alg(T_{(\Sigma,E)})$, with a universal property

For every graded monad T' and concrete functor R': Alg $(\Sigma, E) \rightarrow Alg(T')$:

$$\begin{array}{ccc} \operatorname{Alg}(\Sigma, E) \xrightarrow{R_{(\Sigma, E)}} \operatorname{Alg}(\mathsf{T}_{(\Sigma, E)}) & \mathsf{T}_{(\Sigma, E)} \\ & & & \downarrow^{\operatorname{Alg}(\alpha)} & & \uparrow^{\alpha} \\ & & & \mathsf{Alg}(\mathsf{T}') & & \mathsf{T}' \end{array}$$

(But $R_{(\Sigma,E)}$ is usually not an isomorphism)

For every flexibly graded presentation (Σ, E) , there is:

- ► a notion of (Σ, E) -algebra, forming a locally graded category $Alg(\Sigma, E)$
- a sound and complete equational logic
- ► a graded monad $T_{(\Sigma,E)}$ on Set and concrete functor $R_{(\Sigma,E)} : Alg(\Sigma, E) \rightarrow Alg(T_{(\Sigma,E)})$, with a universal property
- for every op in Σ , a flexibly graded algebraic operation

For op $\in \Sigma(d'_1, \ldots, d'_n; d)$:

$$\alpha_{\mathsf{op},X,e}:\prod_i T_{(\Sigma,E)}X(d'_i \cdot e) \to T_{(\Sigma,E)}X(d \cdot e)$$

natural in e, and compatible with Kleisli extension

(Because each free $T_{(\Sigma,E)}$ -algebra $T_{(\Sigma,E)}X$ forms a (Σ, E) -algebra)

For every flexibly graded presentation (Σ, E) , there is:

- a notion of (Σ, E) -algebra, forming a locally graded category $Alg(\Sigma, E)$
- a sound and complete equational logic
- ► a graded monad $T_{(\Sigma,E)}$ on Set and concrete functor $R_{(\Sigma,E)} : Alg(\Sigma, E) \rightarrow Alg(T_{(\Sigma,E)})$, with a universal property
- for every op in Σ , a flexibly graded algebraic operation

A large class of graded monads have flexibly graded presentations:

- exactly the finitary graded monads on Set
- correspondence goes via flexibly graded clones

Graded monads we care about have natural flexibly graded presentations

Summary

Given a flexibly graded presentation (Σ, E) , there is

- ► a graded monad $T_{(\Sigma,E)}$
- with a $(d'_1, \ldots, d'_n; d)$ -ary algebraic operation

 $\llbracket \operatorname{op} \rrbracket_{X,e} : \prod_i T_{(\Sigma,E)} X(d'_i \cdot e) \to T_{(\Sigma,E)} X(d \cdot e)$

for each op $\in \Sigma(d'_1, \ldots, d'_n; d)$ (satisfying equations)

 that is in some sense canonical, even if it does not quite capture (Σ, E)-algebras

Details are in the papers:

- Dylan McDermott and Tarmo Uustalu, Flexibly graded monads and graded algebras, MPC 2022
- Shin-ya Katsumata, Dylan McDermott, Tarmo Uustalu and Nicolas Wu, Flexible presentations of graded monads, ICFP 2022

Constructing $T_{(\Sigma,E)}$

Constructing $T_{(\Sigma,E)}$

algebraic theories and relative monads are closely connected (jww Nathanael Arkor)

Monads as models of computational effects

Let T be the monad that arises from a presentation (Σ, E) . Then:

- an element $t \in TX$ can be thought of as a computation over X
- ▶ the unit functions $\eta_X : X \to TX$ provide trivial computations
- ▶ the Kleisli extension functions $(X \rightarrow TY) \rightarrow (TX \rightarrow TY)$ provide sequencing of computations
- the interpretation functions

 $\llbracket \operatorname{op} \rrbracket : (TX)^n \to TX$ where $(\operatorname{op} : n) \in \Sigma$

provide effectful operations

Example: if (Σ, E) is the presentation of monoids, then

- a computation $t \in TX = \text{List}X$ is a list of alternatives;
- ► TX = ListX is a monoid, with unit [[u]] : 1 → ListX the empty list multiplication [[m]] : ListX × ListX → ListX concatenation of lists