
Grading call-by-push-value, explicitly and implicitly
Dylan McDermott #

University of Oxford, UK

Abstract
We present call-by-push-value with effects (CBPVE), a refinement of Levy’s call-by-push-value
(CBPV) calculus in which the types contain behavioural information about the effects of computations.
CBPVE fits well into the existing literature on graded types and computational effects. We
demonstrate this by providing graded call-by-value and call-by-name translations into CBPVE, and
a semantics based on algebras of a graded monad.

CBPVE is designed as a standalone calculus, with explicit grade information in the syntax. We
use it to study the assignment of graded types to the terms of an ungraded calculus such as CBPV,
essentially treating the grades as implicit. To interpret such terms in a model that accounts for the
grades, one has to prove a coherence result for the implicit grades. We show that, in the case of a
graded monadic semantics, the necessary coherence result is false in general. To solve this problem,
we show that a mild condition on the algebra of grades is enough to guarantee coherence, giving the
first proof of a coherence result for grading, and hence also the first graded monadic semantics for
CBPV computations.

2012 ACM Subject Classification Theory of computation → Categorical semantics; Theory of
computation → Type structures

Keywords and phrases computational effect, effect system, call-by-push-value, graded monad

Digital Object Identifier 10.4230/LIPIcs.FSCD.2025.25

Funding This work was supported by EU Horizon Europe project TaRDIS (101093006).

Acknowledgements I am grateful to the anonymous referees for helpful comments.

1 Introduction

In the context of programming languages with computational effects, the following two
developments have received a large amount of interest.

Graded type systems are a general paradigm for tracking computational effects. Whenever
some part of a program can have some observable effect, such as printing a value, or
mutating some state, a graded type system would assign a grade to that part. The grade
would record some information about the effects, e.g. what kind of value may be printed,
or which part of the state may be mutated. This information can be useful for instance
in verifying program transformations (e.g. [31, 3, 12]).
Levy’s call-by-push-value calculus [18] was developed to subsume both call-by-value
and call-by-name. It has become one of the standard tools for studying computational
effects (e.g. [2, 27]).

Despite this, the computational effects literature still does not contain any satisfactory
treatment of a graded call-by-push-value calculus. Our primary goal is to provide one.

We introduce a calculus, called call-by-push-value with effects (CBPVE), based on call-
by-push-value (CBPV), but with a graded type system. The design of CBPVE is based
on the insight that in CBPV, one observes effects happening in computations of returner
types. As a consequence, in CBPVE the grade annotations appear on returner types – and
only on returner types. Our intention is for CBPVE to be the basis for studying graded
computational effects in a CBPV-like calculus. We demonstrate its suitability for this purpose
by showing that CBPVE subsumes graded call-by-value and call-by-name calculi, exactly

© Dylan McDermott;
licensed under Creative Commons License CC-BY 4.0

10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025).
Editor: Maribel Fernández; Article No. 25; pp. 25:1–25:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dylan@dylanm.org
https://orcid.org/0000-0002-6705-1449
https://doi.org/10.4230/LIPIcs.FSCD.2025.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Grading call-by-push-value, explicitly and implicitly

as CBPV subsumes the ungraded calculi. We also show that the monadic semantics for
CBPV can be adapted into a graded monadic semantics for CBPVE; graded monads being
the standard tool for modelling graded computational effects, following Katsumata [14].
Explicit and implicit When designing a graded type system, one has to make a choice.
One can either treat (i) the grades as intrinsic to the calculus, so that the grades are baked
into the syntax, and there is no separate ungraded calculus, or (ii) start with an ungraded
calculus (like CBPV), and treat the ability to assign a particular grade to a computation as
merely a property of that computation. In both cases, one has a subgrading rule (analogous
to subtyping), and the most obvious difference between the two approaches lies in this rule.
In the intrinsic approach, terms typically include explicit subgrading coercions, while in the
extrinsic approach, they are necessarily implicit. Both options can be found in the literature,
for instance, [12] has explicit coercions, while [9, 32, 16] have implicit coercions.

It is usual to think of grades as being purely descriptive, so that in particular they cannot
influence the behaviour of a computation in any way; this view fits better into the extrinsic
approach. However, the intrinsic approach is more convenient for the theory. In particular, if
a calculus has implicit coercions, then to interpret it in a model that accounts for the grades,
one should prove a coherence result, stating roughly that the interpretation of a computation
cannot depend on the grades we assign. This is not necessary in the extrinsic approach. This
problem of coherence has largely been neglected for graded type systems. In fact, as we show
in Section 6 below, the coherence result is in general false for graded monads.

The second goal of this paper is to study the difference between the two approaches,
and especially the coherence problem. We design CBPVE following the intrinsic approach:
grades are baked into the calculus, and subgrading is explicit. We then show (Section 6) how
to use CBPVE to overlay grades onto CBPV, providing a graded type system for CBPV.
Since we do not have coherence in general, we cannot always interpret the latter using a
graded monad. But we do not give up on our view of grades as purely descriptive: we exhibit
a mild condition (Definition 11) on the grades that turns out to be strong enough to prove
coherence for any graded monad.
Existing approaches CBPVE is not the first graded CBPV calculus to appear in the
literature. Kammar and Plotkin [12] give a calculus designed to be interpreted using a family
of monads (which can be seen as a graded monad). Their approach has been taken up in
various other works [11, 32]. It is not entirely satisfactory as we explain in the following
paragraph, which is why we develop a new calculus.

In [12, 11, 32], every computation is assigned a grade, unlike in CBPVE, where only
computations of returner types are assigned grades. We argue that our approach is the
correct one, since it is based on the fact that we observe the effects at returner types.
Although the type system of CBPVE is superficially very different to that of [12, 11, 32],
both approaches are sound, and they only have one small difference in expressiveness. The
difference is that, in [12, 11, 32], one can only form a pair of computations of the same
grade. This restriction has no theoretical motivation, and so it is not present in CBPVE. We
can pair computations arbitrarily. This difference is minor, but should not be ignored. For
instance, one of the characteristic properties of call-by-name is the currying isomorphism
(τ × τ ′) → τ ′′ ∼= τ → (τ ′ → τ ′′). Requiring paired computations to have the same grade
breaks this isomorphism. We discuss why in Section 4.2.
Contributions and outline The next section gives some necessary background on CBPV.
The novel work is in the subsequent sections.

Section 3 introduces our new calculus CBPVE, which we argue is the appropriate way to
track effects in a CBPV-like calculus.

D. McDermott 25:3

Section 4 shows that CBPVE subsumes graded call-by-value and call-by-name calculi.
Section 5 describes the graded monadic semantics of CBPVE.
Section 6 shows how to use CBPVE to overlay grades on top of CBPV. We show that the
desired coherence result is false in general, but that it does hold under a mild condition
on the grades. This is the first proof of a coherence result for a graded type system.
Section 7 discusses some related work, and compares with [12, 11, 32] in more detail.

2 Call-by-push-value (without grades)

We briefly describe the syntax of Levy’s [18, 20] call-by-push-value (CBPV). The syntax of
CBPV terms is stratified into two kinds: values V, W do not reduce, computations M, N

might reduce (possibly with side-effects). The syntax of types is similarly stratified into value
types A, B and computation types C, D.

A, B ::= UC | 1 | A1 ×A2 |
∐

i∈I Ai

C, D ::= FA |
∏

i∈I Ci | A→ C

V, W ::= x | thunk M | () | (V1, V2) | inji V

M, N ::= return V | M to x. N | do y ← op V then M

| λ{i. Mi}i∈I | i‘M | λx : A. M | V ‘M
| force V | match V with (x1, x2) in M | match V with {inji xi. Mi}i∈I

The value type UC is the type of thunks of computations of type C. Elements of UC

are introduced using thunk: the value thunk M is the suspension of the computation term
M . The corresponding eliminator is force, which is the inverse of thunk. Value types also
include a unit type 1, binary products, and finite sums (we require I to be finite). We write
0 for the empty type (the sum type with I = ∅).

The returner type FA has as elements computations that return elements of the value
type A; these computations may have observable effects. Elements of FA are introduced by
return; the computation return V immediately returns the value V (with no side-effects).
Computations can be sequenced using M to x. N . This first evaluates M (which is required
to have returner type), and then evaluates N with x bound to the result of M . Computation
types also include finite products; λ{i. Mi}i∈I is the tuple of computations whose ith element
is Mi, and i‘M is the ith projection of M . Finally, we have function types A→ C. Functions
send values to computations, and are computations themselves. Function application is
written V ‘M , where V is the argument and M is the function to apply.

A ground type is a value type that does not contain U. We augment Levy’s [18] syntax, by
adding computations do y ← op V then M . This computation performs an effectful operation
op, with parameter V , and then continues as M . We assume a fixed set of operation symbols
op, each equipped with two ground types, called the parameter type and the arity. We write
op : A⇝ B to indicate that op has parameter type A and arity B. For instance, we could
have raise : 1⇝ 0 for raising an exception, get : 1⇝ A and put : A⇝ 1 for interacting with
a global state of type A, or printm : 1⇝ 1 for printing a value m.

CBPV has two typing judgments: Γ ⊢ V : A for values and Γ ⊢M : C for computations.
Typing contexts Γ are ordered lists of (variable, value type) pairs; we write · for the empty
typing context. Figure 1 gives the typing rules.

FSCD 2025

25:4 Grading call-by-push-value, explicitly and implicitly

(x : A) ∈ Γ
Γ ⊢ x : A

Γ ⊢M : C

Γ ⊢ thunk M : UC Γ ⊢ () : 1

Γ ⊢ V1 : A1 Γ ⊢ V2 : A2

Γ ⊢ (V1, V2) : A1 ×A2

Γ ⊢ V : Ai

Γ ⊢ injiV :
∐

i∈I
Ai

(a) Typing rules for values Γ ⊢ V : A.

Γ ⊢ V : A

Γ ⊢ return V : FA

Γ ⊢M : FA Γ, x : A ⊢ N : C

Γ ⊢M to x. N : C

op : A⇝ B Γ ⊢ V : A Γ, y : B ⊢M : C

Γ ⊢ do y ← op V then M : C

(b) Typing rules for returner types and operations.

{Γ ⊢Mi : Ci}i∈I

Γ ⊢ λ{i. Mi}i∈I :
∏

i∈I
Ci

Γ ⊢M :
∏

i∈I
Ci

Γ ⊢ i‘M : Ci

Γ, x : A ⊢M : C

Γ ⊢ λx : A. M : A→ C

Γ ⊢ V : A Γ ⊢M : A→ C

Γ ⊢ V ‘M : C

Γ ⊢ V : A1×A2 Γ, x1 : A1, x2 : A2 ⊢M : C

Γ ⊢match V with (x1, x2) in M : C

Γ ⊢ V :
∐

i∈I
Ai {Γ, xi : Ai ⊢Mi : C}i∈I

Γ ⊢match V with {inji xi. Mi}i∈I : C

Γ ⊢ V : UC

Γ ⊢ force V : C

(c) Typing rules for the remaining computations
Γ ⊢M : C.

Figure 1 Typing rules for call-by-push-value, without grades.

3 Grading call-by-push-value, explicitly

Now that we have given the type system of CBPV, we consider how to turn it into a
graded type system. This section introduces our new calculus call-by-push-value with effects
(CBPVE).

First we need to assume a given collection of grades; following [14], we assume they form
an ordered monoid.

▶ Definition 1. An ordered monoid (E,≤, 1, ·) is a monoid (E, 1, ·) equipped with a preorder
≤ on E, such that the multiplication · is monotone.

The grades d, e are elements of the set E. The order ≤ provides a notion of approximation of
grades: d ≤ e means e is more restrictive than e. The multiplication · represents sequencing:
d · e is the grade of running a computation of grade d followed by a computation of grade e.
The grade 1 is for computations with no effects.

We require each operation to come with a grade d ∈ E, the grade of performing the
operation. Thus we assume a given signature in the following sense, similar to Kura’s notion
of graded signature [17]. Note that the ground types of CBPVE are identical to those of
CBPV, since they do not contain any grade information.

▶ Definition 2. A graded operation signature Σ is a set of operation symbols op : A⇝e B,
each equipped with a grade d, and two ground types, the parameter type A and the arity B.

For instance, given a set Σ of operation symbols, we could take E to be the powerset
of Σ, ordered by inclusion, and with union for the multiplication, and then assign to each
operation op the grade {op}. The result would be a Gifford-style type-and-effect system [23]
that tracks which operations a computation may use as it runs. Alternatively, we could take
natural numbers with addition and the usual ordering, and printm : 1⇝1 1. Then “having
grade e” would mean printing at most e many values; each execution of print contributing 1
to the grade.

D. McDermott 25:5

Γ ⊢g V : A

Γ ⊢g return V : F1A

Γ ⊢g M : FdA Γ, x : A ⊢g N : C

Γ ⊢g M to x. N : ⟨⟨d⟩⟩C

op : A⇝d B Γ ⊢g V : A Γ, y : B ⊢g M : C

Γ ⊢g do y ← op V then M : ⟨⟨d⟩⟩C
Γ ⊢g M : C C <: D

Γ ⊢g coerceD M : D

Figure 2 Typing rules for CBPVE returner types, operations, and coercions. These replace the
rules of Figure 1b; the remaining CBPVE typing rules are those of Figures 1a and 1c.

Given an ordered monoid E, we generate CBPVE types in the same way as for CBPV,
except that each returner type is annotated with a grade e ∈ E. Thus FeA is the type of
computations that return values of A, and which have grade e.

A, B ::= UC | 1 | A1 ×A2 |
∐

i∈I Ai C, D ::= FeA |
∏

i∈I Ci | A→ C

The ordered monoid structure of the grades E induces some structure on types, which
we use to define the CBPVE typing judgements. The order ≤ on grades induces subtyping
preorders <: on both value types and computation types, defined inductively by lifting ≤
to returner types, and using the expected rules for the remaining type formers, including
contravariance at function types:

C <: D

UC <: UD 1 <: 1
A1 <: B1 A2 <: B2

A1 ×A2 <: B1 ×B2

{Ai <: Bi}i∈I∐
i∈I Ai <:

∐
i∈I Bi

d ≤ e A <: B

FdA <: FeB

{Ci <: Di}i∈I∏
i∈I Ci <:

∏
i∈I Di

B <: A C <: D

A→ C <: B → D

The multiplication of the ordered monoid also lifts to computation types; for each grade d

and computation type C, we define a computation type ⟨⟨d⟩⟩C as follows.

⟨⟨d⟩⟩(FeA) = Fd·eA ⟨⟨d⟩⟩
(∏

i∈I Ci

)
=

∏
i∈I ⟨⟨d⟩⟩Ci ⟨⟨d⟩⟩(A→ C) = A→ ⟨⟨d⟩⟩C

Informally, ⟨⟨d⟩⟩C is the type of a computation that does something of grade d, and then
continues as a computation of type C. This defines an action of the ordered monoid of grades
on the preorder of computation types, in the sense that ⟨⟨−⟩⟩ is monotone (if d ≤ e and C <:D
then ⟨⟨d⟩⟩C <: ⟨⟨e⟩⟩D), and is unital (⟨⟨1⟩⟩C = C) and associative (⟨⟨d⟩⟩(⟨⟨d′⟩⟩C) = ⟨⟨d · d′⟩⟩C).

We extend the syntax of computations by adding explicit subtype coercions; the syntax
of computations and of values is otherwise unchanged from CBPV.

M ::= · · · | coerceD M

The typing judgements Γ ⊢g V : A and Γ ⊢g M : C are also similar to CBPV, but we add the
superscript g to distinguish them. The majority of the rules generating these are identical to
those of CBPV; the new rules are given in Figure 2.

This concludes the basic syntax of our calculus CBPVE. When discussing the coherence
result in Section 6, we will also need the equational theory ≡ for CBPVE, which provides a
notion of equality between computations of the same type. It is generated by the β- and
η-laws for each type, sequencing laws (as in CBPV), and also coercion laws, which permit
coercions to be moved around in terms. For space reasons, we list the laws only in the
appendix (Figure 5), but none of them are surprising.

FSCD 2025

25:6 Grading call-by-push-value, explicitly and implicitly

4 Subsuming call-by-value and call-by-name

CBPV subsumes both call-by-value and call-by-name, and it is important that we have
an analogous fact for CBPVE. We show in this section that Levy’s translations [18, 20]
of fine-grain call-by-value, and of call-by-name, lift to the graded setting. For a proper
subsumption result we need more than this, in particular subsumption of the CBV and CBN
semantics and equational theories. These do not pose any particular difficulties, but we omit
them for space reasons.

4.1 Fine grain call-by-value
We first consider fine-grain call-by-value [21], a call-by-value calculus that separates terms into
values v and computations t. It is well-known how to add effects to fine-grain call-by-value.
The only modifications we make to the syntax are to incorporate grades are to annotate each
function type τ →e τ ′ with a grade e, and to add coercions.

τ ::= 2 | τ1 × τ2 | τ →e τ ′

v, w ::= x | true | false | (v1, v2) | λx : τ. t

t, u ::= return v | t to x. u | do y ← op v then t | coercee t

| v w | if v then t1 else t2 | match v with (x1, x2) in t

The typing judgements are Γ ⊢ v : τ for values and Γ ⊢ t : τ & e for computations, where
Γ is a list of (variable, type) pairs. Every computation is assigned a grade e. We assume
a graded CBV operation signature, namely a collection of operations, each with a suitable
typing op : τ ⇝d τ ′, where τ and τ ′ are ground types (they do not contain function types).
The typing rules are as follows, where we omit the obvious rules for variables x, the boolean
constants true and false, and pairs (v1, v2).

Γ, x : τ ⊢ t : τ ′ & e

Γ ⊢ λx : τ. t : τ →e τ ′
Γ ⊢ v : τ

Γ ⊢ return v : τ & 1

Γ ⊢ t : τ & d Γ, x : τ ⊢ u : τ ′ & e

Γ ⊢ t to x. u : τ ′ & (d · e)

op : τ ⇝d τ ′ Γ ⊢ v : τ Γ, y : τ ′ ⊢ t : τ ′′ & e

Γ ⊢ do y ← op v then t : τ ′′ & d · e
Γ ⊢ t : τ & d d ≤ e

Γ ⊢ coercee t : τ & e

Γ ⊢ v : τ→eτ ′ Γ ⊢ w : τ

Γ ⊢ v w : τ ′ & e

Γ ⊢ v : 2 Γ ⊢ t1 : τ & e Γ ⊢ t2 : τ & e

Γ ⊢ if v then t1 else t2 : τ & e

Γ ⊢ v : τ1 × τ2 Γ, x1 : τ1, x2 : τ2 ⊢ t : τ ′ & e

Γ ⊢match v with (x1, x2) in t : τ ′ & e

We translate each component of the syntax into CBPVE. Each type τ becomes a value type
Lτ Mv, and typing contexts are translated componentwise. Each operation op : τ ⇝d τ ′ becomes
an operation op : Lτ Mv ⇝d Lτ ′Mv. Each value Γ ⊢ v : τ becomes a value LΓMv ⊢g LvMv : Lτ Mv,
and each computation Γ ⊢ t : τ & e becomes a computation LΓMv ⊢g LtMv : FeLτ Mv. We omit
most of the definition for the latter two, because the omitted parts are exactly the same as
the standard translation [20].

L2Mv =
∐

i∈{1,2} 1 Lτ1 × τ2Mv = Lτ1Mv × Lτ2Mv Lτ →e τ ′Mv = U(Lτ Mv → FeLτ ′Mv)

Ldo y ← op v then tMv = do y ← opLvMv then LtMv

Lcoercee tMv = coerceFeLτ Mv LtMv

D. McDermott 25:7

4.2 Call-by-name

We also show that CBPVE subsumes a graded call-by-name calculus. The design of this
calculus is based on the same insight as the design of CBPVE, namely that we only observe
effects at some computation types, and hence grades are only present at these types. In
call-by-name, we only observe effects at ground types γ (the only ground type we include
here is 2), and hence we annotate ground types with grades e. Call-by-name does not have a
separate notion of value; there are only computations.

τ ::= γe | τ1 × τ2 | τ → τ ′ γ ::= 2
t, u ::= x | op(t) | coerceτ t | true | false | if t then u1 else u2

| (t1, t2) | fst t | snd t | λx : τ. t | t u

As for CBPVE, there is again a subtyping relation τ <: τ ′, and an action ⟨⟨d⟩⟩τ of grades on
types. The latter is given by ⟨⟨d⟩⟩γe = γd·e for ground types, ⟨⟨d⟩⟩(τ1 × τ2) = ⟨⟨d⟩⟩τ1 × ⟨⟨d⟩⟩τ2,
and ⟨⟨d⟩⟩(τ → τ ′) = τ → ⟨⟨d⟩⟩τ ′. The typing judgement has the form Γ ⊢ t : τ . The rules for
variables, product types, and function types are identical to those for simply-typed lambda
calculus, and the rules for true and false assign the type 21. The remaining rules are as
follows, where we again assume operations have suitable typing.

op : γ ⇝e γ′ Γ ⊢ t : γd

Γ ⊢ op(t) : γ′
d·e

Γ ⊢ t : τ τ <: τ ′

Γ ⊢ coerceτ ′ t : τ ′

Γ ⊢ t : 2d Γ ⊢ u1 : τ Γ ⊢ u2 : τ

Γ ⊢ if u then t1 else t2 : ⟨⟨d⟩⟩τ

CBPVE subsumes our graded call-by-name calculus by mapping types τ to computation
types, ground types γ to value types, typing contexts Γ to CBPVE typing contexts, and
computations Γ ⊢ t : τ to computations LΓMn ⊢ LtMn : Lτ Mn as follows. Again we omit much of
the definition; the remainder is exactly the same usual translation of CBN into CBPV [18].

LγeMn = FeLγMn Lτ1 × τ2Mn =
∏

i∈{1,2} LτiMn Lτ→τ ′Mn = ULτ Mn → Lτ ′Mn

L2Mn =
∐

i∈{1,2} 1 L · Mn = · LΓ, x : τ Mn = LΓMn, x : ULτ Mn

Lop(t)Mn = LtMn to x. do y ← op x then return y Lcoerceτ tMn = coerceLτ Mn LtMn

That LtMn has the correct typing relies on the fact that τ <: τ ′ implies Lτ Mn <: Lτ ′Mn, and on
L⟨⟨e⟩⟩τ Mn = ⟨⟨e⟩⟩Lτ Mn.

One of the characteristic features of call-by-name is the isomorphism (τ×τ ′)→ τ ′′ ∼= τ →
(τ ′ → τ ′′) given by uncurrying, which does not hold in call-by-value. This isomorphism holds
in our graded CBN calculus up to suitable β- and η-laws. In particular, if Γ ⊢ t : (τ×τ ′)→ τ ′′,
then we have a computation Γ ⊢ (λx : τ. λx′ : τ ′. t (x, x′)) : τ → (τ ′ → τ ′′). If we had assigned
a grade to each computation as in [12, 11, 32], and then forced elements of pairs to have the
same grade, we would not have such an isomorphism. This provides some motivation for
assigning grades only to returners in CBPVE.

5 Graded monad semantics

We give a categorical semantics for CBPVE, based on algebras1 of a graded monad [5, 30, 14].
This is directly analogous to the semantics of CBPV using monad algebras [20]. By composing
our CBPVE semantics with the fine grain call-by-value and the call-by-name translations, we
therefore also obtain CBV and CBN semantics. In particular, we recover the known graded

FSCD 2025

25:8 Grading call-by-push-value, explicitly and implicitly

monad interpretation of fine-grain call-by-value with grades [1]. Since coercions are explicit
in CBPVE, there are no issues with coherence in the semantics.

We assume that the base category C of each model is bicartesian closed. That is, the
base category C has finite products, finite coproducts, and exponentials X ⇒ Y . We write
Λf : W → X ⇒ Y for the currying of a morphism f : W × X → Y , and write Λ−1g for
uncurrying. Such a category is necessarily distributive, meaning that for every family of
morphisms fi : W ×Xi → Y indexed by the elements i of a finite set I, there is a unique
morphism [fi]i∈I : W×

∐
i Xi → Y such that fi = [fi]i∈I ◦(idW×ini), where ini : Xi →

∐
i Xi

is the ith coprojection.
We continue to assume a given ordered monoid (E,≤, 1, ·) of grades, the same ordered

monoid used for the syntax.

▶ Definition 3. A graded object X of a category C is a functor X : E→ C; that is, a family
of objects Xd indexed by grades d ∈ E, together with a coercion morphism e∗ : Xd→ Xe for
each e ≥ d, satisfying identity and composition laws.

We need our graded monads to be strong, just as models of Moggi’s monadic metalan-
guage [25] use a strong monad. Instead of presenting the strength as some extra on top of
the notion of graded monad, it is more convenient for us to bake strength into the (Kleisli)
extension operator of the graded monad. This is equivalent to the standard definition of
strong graded monad [14], for the same reasons that we can bake the strength into the Kleisli
extension of an ordinary strong monad (see for example [24]). Thus we go directly to our
definition of strong graded monad.

▶ Definition 4. A strong graded monad T on C consists of the following data.
A graded object TX of C, for each X ∈ C;
a unit morphism returnX : X → TX1 for each X ∈ C;
a Kleisli extension operator (−)† : C(W ×X, TY e)→ C(W × TXd, TY (d · e)) for each
W, X, Y ∈ C and d, e ∈ E.

We require (−)† to be natural in W , and in both of the grades d, e. We also require that
graded analogues of the three monad laws hold. These are as follows, using the canonical
isomorphisms assocW ′,W,X : (W ′ ×W)×X ∼= W ′ × (W ×X) and lunitX : 1×X ∼= X.

f† ◦ (idW × returnX) = f for all f : W ×X → T Y e

(returnX ◦ lunitX)† = lunitT Xd for all X ∈ C, d ∈ E

(g† ◦ (idW ′×f) ◦ assocW ′,W,X)† = g† ◦ (idW ′×f†) ◦ assocW ′,W,T Xd for all
f : W ×X → T Y e

g : W ′ × Y → T Ze′

d ∈ E

To interpret computations, we need to assume an interpretation of each operation op in
the graded monad. We summarize the requirements we have in the following definition.

▶ Definition 5. A graded model consists of a bicartesian closed category C, a strong graded
monad T on C, and a morphism κop : JAK→ T JBKd for each op : A⇝d B.

For instance, if the grades are natural numbers and there is an operation printw : 1⇝1 1
for each w ∈ W , then one can take the graded writer monad TXe = ListeW ×X on Set,

1 One may wish to consider other semantics for CBPVE, such as a notion of adjunction model analogous
to Levy’s [19] adjunction models for CBPV. Fujii et al.’s [8] decompositions of a graded monad into an
adjunction equipped with an action provide a hint for what this would look like.

D. McDermott 25:9

where ListeW is the set of lists of length at most e. For κprintw
: {⋆} → List1W × {⋆}, we

take the function that picks out the singleton list [w].
We interpret computation types as (graded) algebras for T [8]. As above, we present

the notion of algebra in extension form, and bake the strength directly into the extension
operator; again this is equivalent to the usual definition. We also use a parameterized (cf.
[7]) notion of morphism between algebras.2 This specializes to the usual notion of morphism
by taking W = 1.

▶ Definition 6. Let T be a strong graded monad on a cartesian category C. A T -algebra is
a graded object Z of C, called the carrier, equipped with an extension operator (−)‡ : C(W ×
X, Ze) → C(W × TXd, Z(d · e)), for each W, X ∈ C and d, e ∈ E, natural in W, d, e, and
satisfying the following.

f‡ ◦ (idW × returnX) = f for all f : W ×X → Ze

(g‡ ◦ (idW ′×f) ◦ assoc)‡ = g‡ ◦ (idW ′×f†) ◦ assoc for all f : W ×X → TY e

g : W ′ × Y → Ze′

If W ∈ C is an object, and Z, Z ′ are T -algebras, then a parameterized T -algebra morphism
h : W × Z → Z ′ is a family of morphisms he : W × Ze → Z ′e, natural in e and satisfying
(he ◦ ⟨π1, f⟩)‡ = hd·e ◦ ⟨π1, f‡⟩ for all d ∈ E and f : W ×X → Ze.

▶ Example 7. Every graded operation signature Σ induces a free strong graded monad TΣ
on Set. We give an explicit construction of this graded monad, based on [15]. First, for each
ground type A, we define its interpretation as a set JAK:

J1K = {⋆} JA1 ×A2K = JA1K× JA2K
q∐

i∈I Ai

y
=

∐
i∈I JAiK

The elements t of the graded set TX are generated by elements x of X, which can be thought
of as variables, the operation symbols op of Σ, and coercions, as follows. They are quotiented
by smallest congruence relation ≈ generated by the three axioms below, where t ∈ TXd and
k : JBK→ TXe.

x ∈ X

x ∈ TX1

op : A⇝d B a ∈ JAK k : JBK→ TXe

op(a; k) ∈ TX(d · e)
t ∈ TXd d ≤ e

e∗t ∈ TXe

t ≈ d∗t e∗(d∗t) ≈ e∗t op(a; b 7→ e′∗(kb)) ≈ (d · e′)∗(op(a; k))

The unit functions returnX : X → TX1 are given by the variables x, and Kleisli extension is
given by substitution. This graded monad forms a graded model, by equipping it with the
functions κop : JAK→ TΣJBK given by κop(a) = op(a; b 7→ b).

A TΣ-algebra is equivalently a graded set Z, equipped with a function JopK : JAK× (JBK⇒
Ze) → Z(d · e) for each op : A ⇝d B and e ∈ E, natural in e. Given these functions, the
corresponding extension operator is given by f‡(w, t) = JtK(x 7→ f(w, x)), where for each
t ∈ TXd, the function JtK : (X ⇒ Ze)→ Z(d · e) is defined by

JxKρ = ρ(x) Jop(a; k)Kρ = JopK(a, b 7→ JkbKρ) Je∗tKρ = e∗(JtKρ)

A parameterized morphism h : W×Z → Z ′ is equivalently a family of functions that preserves
the interpretation of each operator, in the sense that hd·e(w, JopK(a, f)) = JopK(a, b 7→
he(w, kb)).

2 Parameterization is also present in Levy’s locally indexed perspective on models of CBPV [19], and
taking a locally indexed perspective on graded monads would likely be useful. We do not do so here
simply because it requires setting up more definitions.

FSCD 2025

25:10 Grading call-by-push-value, explicitly and implicitly

We will need the following constructions on T -algebras to interpret CBPVE. The first
three are graded adaptations of the T -algebra constructions used to interpret CBPV with
a strong monad. The final one is specific to the graded setting; it is the action of E on
T -algebras that plays a crucial role in the theory of graded monads [8].

The free T -algebra FT X on an object X ∈ C has the graded object TX as its carrier,
and (−)† as its extension operator.
The finite product

∏
i Zi of T -algebras Zi has carrier (

∏
i Zi)e =

∏
i(Zie). The extension

operator is unique such that the projection morphisms πj :
∏

i(Zie)→ Zje form algebra
morphisms

∏
i Zi → Zj .

The power X ⇒ Z of a T -algebra Z by an object X ∈ C has as its carrier the graded
object (X ⇒ Z)e = X ⇒ Ze given by exponentials in C. The extension operator is unique
such that the evaluation morphisms ev : X × (X ⇒ Ze) → Ze form a parameterized
algebra morphism X × (X ⇒ Z)→ Z.
The T -algebra e∗Z, where Z is a T -algebra and e is a grade, has carrier (e∗Z)e′ = Z(e′ ·e);
the extension operator is given by specializing that of Z.

Under the above definitions, the extension operator for an algebra Z sends each C-
morphism f : W ×X → Ze to a parameterized T -algebra morphism f‡ : W × FT X → e ∗ Z.

The interpretations of value types as objects of C and of computation types as T -algebras
are defined in Figure 3a. It follows from the definition that J⟨⟨e⟩⟩CK = e ∗ JCK. We also
interpret typing contexts as objects JΓK of C, using finite products. To interpret the subtyping
rules, we also define C-morphisms JA <: BK and T -algebra morphisms JC <: DK, as shown in
Figure 3b.

Given a graded model as in Definition 5, the interpretations of values as morphisms
JV K : JΓK→ JAK and of computations as morphisms JMK : JΓK→ JCK1 are defined in Figure 3c.
Both of these are morphisms in C. Except for the typing, and for the interpretation of
coercions, the definition is exactly what one would expect for CBPV. We do not have to do
anything special to account for grading.

The main result of this section is soundness of the equational theory defined in Figure 5
(in the appendix).

▶ Theorem 8. If M ≡M ′ then JMK = JM ′K, and if V ≡ V ′ then JV K = JV ′K.

Proof. By induction on the derivations of M ≡M ′ and of V ≡ V ′. Verifying the β-, η- and
sequencing laws is standard. The first few coercion laws need identity and composition laws
for the interpretation of subtyping, along with the fact that J⟨⟨e⟩⟩C <: ⟨⟨e⟩⟩DK = e ∗ JC <: DK;
these are easy to show. The remaining coercion laws either follow from the definition of the
subtyping morphisms, or are immediate from the interpretation of computations. ◀

6 Graded call-by-push-value, implicitly

The discussion of the previous sections treats CBPVE as an entirely separate calculus to
CBPV, with its own syntax of computations. The alternative approach, as discussed in the
introduction, is to view the ability to assign particular grades as a property of a computation.
In this view, we retain the original syntax of CBPV values V and computations M , but
have judgements Γ ⊢i V : C and Γ ⊢i M : C, where Γ, A, and C are contexts and types
from CBPVE. These judgements express stronger properties than the typing judgements
of ordinary CBPV. The primary difference with this approach is that there are no explicit

D. McDermott 25:11

JUCK = JCK1 J1K = {⋆} JA1 ×A2K = JA1K× JA2K
q∐

i∈I Ai

y
=

∐
i JAiK

JFeAK = e ∗ FT JAK
q∏

i∈I Ci

y
=

∏
i JCiK JA→ CK = JAK⇒ JCK

J·K = {⋆} JΓ, x : AK = JΓK× JAK

(a) Interpretation of value types A as objects JAK of C, of computation types C as T -algebras JCK, and of
typing contexts Γ as objects JΓK of C.

JUC <: UDK = JC <: DK1 J1 <: 1K = id
JA1×A2 <: B1×B2K = JA1<:B1K× JA2<:B2K

q∐
i∈I Ai <:

∐
i∈I Bi

y
=

∐
i JAi <: BiK

JFdA <: FeBKe′ = (e′ · e)∗ ◦ (return ◦ JA <: BK)†

q∏
i∈I Ci <:

∏
i∈I Di

y
e

=
∏

i JCi <: DiKe

JA→ C <: B → DKe = JB <: AK⇒ JC <: DKe

(b) Interpretation of value subtyping as morphisms JA <: BK : JAK→ JBK, and of computation subtyping
as T -algebra morphisms JC <: DK : JCK→ JDK.

JxK = πx Jthunk MK = JMK J()K = ⟨⟩JΓK J(V1, V2)K = ⟨JV1K, JV2K⟩ Jinji V K = ini ◦ JV K

Jreturn V K = return ◦ JV K JM to x. NK = JNK‡ ◦ ⟨id, JMK⟩

Jdo y ← op V then MK = JMK‡ ◦ ⟨id, κop ◦ JV K⟩
q
coerceD M

y
= JC <: DK1 ◦ JMK

Jλ{i. Mi}i∈IK = ⟨JMiK⟩i∈I Ji‘MK = πi ◦ JMK

Jλx : A. MK = ΛJMK

JV ‘MK = Λ−1JMK ◦ ⟨id, JV K⟩
Jmatch V with (x, y) in MK = JMK ◦ assoc−1 ◦ ⟨id, JV K⟩
Jmatch V with {inji xi. Mi}i∈IK = [JMiK]i ◦ ⟨id, JV K⟩
Jforce V K = JV K

(c) Interpretation of values Γ ⊢g V : A as morphisms JV K : JΓK→ JAK of C and of computations Γ ⊢g M : C
as morphisms JMK : JΓK→ JCK1 of C. The morphism πx : JΓK→ JAK is the projection corresponding to
the variable x, where (x : A) ∈ Γ.

Figure 3 Graded monad semantics of CBPVE

coercions in the syntax of computations, instead there is an admissible rule

Γ ⊢i M : C C <: D

Γ ⊢i M : D

We can define these judgements using the CBPVE typing judgements. For a CBPVE
computation M , we let ⌊M⌋ be the CBPV computation that arises by erasing all grade
information, with ⌊coerceD M⌋ = ⌊M⌋; we similarly define ⌊−⌋ for all of the other parts
of the CBPVE syntax. Then we can view a CBPVE computation Γ ⊢g M ′ : C such that
⌊M ′⌋ = M as a witness that the typing judgement Γ ⊢i M : C holds, as in the following
definition.

▶ Definition 9. We write Γ ⊢i M : C when there exists some M ′ such that Γ ⊢g M ′ : C and
⌊M ′⌋ = M . We define Γ ⊢i V : A similarly.

FSCD 2025

25:12 Grading call-by-push-value, explicitly and implicitly

One can then read off typing rules that generate Γ ⊢i M : C, including the implicit coercion
rule above, but we will not state these rules explicitly.

If Γ ⊢i M : C holds, then we might expect to be able to interpret the CBPV computation
JMK as a morphism JMK : JΓK→ JCK1 in any graded model, where JΓK and JCK are as defined
in the previous section. The way to do this is to leverage the interpretation of CBPVE
computations, defining

JMK = JM ′K where M ′ witnesses Γ ⊢i M : C

The problem is that, in general, there are several different witnesses M ′; for JMK to be
well-defined, we need all of them to have identical interpretations. Thus, we would like the
graded model to be coherent, in the sense that

⌊M1⌋ = ⌊M2⌋ implies JM1K = JM2K for all Γ ⊢g M1 : C and Γ ⊢g M2 : C

and similarly for interpretations of values.
Sadly, it turns out that coherence is false in general, as the following example demonstrates.

▶ Example 10. Consider the following 5-element ordered monoid:

b1 b2

1

a1 a2

1 · e = e = e · 1
d · e = b2 = e · d (1 ̸∈ {d, e})

Let Γ = x : U(Fb22), y1 : U(Fa10), y2 : U(Fa20), where 2 =
∐

i∈{1,2} 1. Our counterexample
to coherence consists of the following two computations Γ ⊢g Mi : Fb20 (i ∈ {1, 2}).

Mi = force x to z. match z with {injj w. coerceFbi
0 (force yj)}j∈{1,2}

These two computations satisfy ⌊M1⌋ = ⌊M2⌋, and while they differ in the type Fbi
0 of the

coercion, M1 and M2 have a common type Fb20 = ⟨⟨b2⟩⟩(Fb10) = ⟨⟨b2⟩⟩(Fb20). Nevertheless,
they can be distinguished by a graded model. Before showing how to do this, we note that if
one were to add an empty ground type to the call-by-name calculus (or replace 0 with 2
above), then computations M1 and M2 would be in the image of the call-by-name translation.
Thus, the same coherence problem is already present in call-by-name. We can also adjust the
counterexample to one that involves translations of call-by-value computations, by replacing
the typing context with Γ = x : U(1 → Fb22), y1 : U(1 → Fa10), y2 : U(1 → Fa20); and
thus coherence is also an issue when grading call-by-value.

The rest of this example is devoted to showing that the terms M1 and M2 can be
distinguished by a graded model. Let Σ be the graded operation signature consisting of three
operation symbols

op1 : 1⇝a1 0 op2 : 1⇝a2 0 op3 : 1⇝b2 2

and consider the free graded monad TΣ on Set (Example 7). The computations Mi are
interpreted as functions JMiK : TΣJ2Kb2 × TΣ0a1 × TΣ0a2 → TΣ0b2. The set TΣJ2Kb2 has
an element op3(⋆; x 7→ x), and the two sets TΣ0ai each have a unique element opi(⋆; _).
Applying the functions JMiK to these yield the following two elements of TΣ0b2.

ti = op3(⋆; j 7→ b∗
i (opj(⋆; _))) where J2K = {1, 2}

To conclude that JM1K ̸= JM2K, it is then enough to show that t1 ̸= t2. This is not quite
trivial, because the construction of the free graded monad TΣ involves a quotient, by an

D. McDermott 25:13

equivalence relation ≈. We show that t1 and t2 are distinct by exhibiting a TΣ-algebra Z

such that Jt1K(_) ̸= Jt2K(_), where _ is the unique function 0→ Zb2. The carrier of Z is
the graded set given by

Z1 = {} Za1 = Zb1 = {1} Za2 = {0} Zb2 = {0, 1}

The coercion functions are inclusions, except for b1
∗ : Za2 → Zb1, which is the unique

function {0} → {1}. The operator symbols are interpreted as follows, where ⊕ is addition
modulo 2.

Jop1K(_, _) = 1 Jop2K(_, _) = 0 Jop3K(_, (x, y)) = x⊕ y

Verifying that this is a TΣ-algebra is trivial, and we can calculate that this algebra does
distinguish between t1 and t2, as required: Jt1K(_) = 1⊕ 1 = 0 ̸= 1 = 1⊕ 0 = Jt2K(_).

The good news is that there are many cases in which the above interpretation of Γ ⊢i M : C

does work. In particular, we show that, if we assume the following condition on the ordered
monoid of grades, then coherence does hold, for every graded model.

▶ Definition 11. An ordered monoid E has left-cancellative upper bounds if, whenever

d · e1 ≤ d′ ≥ d · e2

there exists some e′ such that e1 ≤ e′ ≥ e2 and d · e′ ≤ d′.

This condition is a mild one. For instance, it is common for grades to have least upper
bounds (cf. [26]), and for multiplication · to distribute over least upper bounds from the left
(d · (e1 ⊔ e2) = (d · e1) ⊔ (e · e2)). This is enough to guarantee that E has left-cancellative
upper bounds, because if we have d · e1 ≤ d′ ≥ d · e2, then we can take e′ = e1 ⊔ e2.

Having left-cancellative upper bounds guarantees coherence, and hence that the inter-
pretation of Γ ⊢i M : C is well-defined.

▶ Theorem 12. Assume that E has left-cancellative upper bounds. For all computations
Γ ⊢ Mi : C such that ⌊M1⌋ = ⌊M2⌋, we have M1 ≡ M2. It follows that JM1K = JM2K for
every graded model.

Proof. We defer the proof of M1 ≡M2 to Section 6.1 below. That the interpretations are
equal follows by Theorem 8. ◀

For instance, consider what happens when we adjust our counterexample by adding an upper
bound.

▶ Example 13. For our counterexample to coherence (Example 10), the ordered monoid does
not have left-cancellative upper bounds: we have b2 · b1 ≤ b2 ≥ b2 · b2, but b1 and b2 do not
have an upper bound. Suppose that we were to add an upper bound b′, with b′ ·e = b2 = e · b′.
This adjusted ordered monoid does have left-cancellative upper bounds. Accordingly, we can
show that M1 ≡M2 with the adjusted ordered monoid: for each i we have

Mi ≡ coerceFb2·b′ 0 Mi

≡ force x to z. match z with {injj w. coerceFb′ 0 (coerceFbi
0 (force yj))}j∈{1,2}

≡ force x to z. match z with {injj w. coerceFb′ 0 (force yj)}j∈{1,2}

FSCD 2025

25:14 Grading call-by-push-value, explicitly and implicitly

In the above example, we show M1 ≡M2 using only the coercion laws of Figure 5d. We
emphasize however that coherence is not simply a matter of moving coercions around; as the
following example demonstrates, we need to employ the other laws in some cases.

▶ Example 14. Let E be the positive integers with multiplication and the discrete ordering,
and suppose that the graded operation signature contains an operation symbol raise : 1⇝1 0,
for raising an exception. For every type C, we have the following closed computation
raiseC : C.

raiseC = do y ← raise() then match y with {}

Thus, for all positive integers i, j, we have a closed computation Mi,j : Fi·j0:

Mi,j = raiseFi0 to x. raiseFj0

The computations Mi,j and Mj,i have the same type, and satisfy ⌊Mi,j⌋ = ⌊Mj,i⌋, but (for
i ̸= j), we clearly cannot show Mi,j ≡ Mj,i using the coercion laws of Figure 5d alone,
because the ordering on E is discrete. It is true that Mi,j ≡Mj,i however, using one of the
sequencing laws and the η-law for sum types.

Mi,j ≡ do y ← raise() then (match y with {} to x. raiseFj0) ≡ raiseFi·j0

This example also illustrates one of the main difficulties in the proof of coherence. Even
though Mi,j and Mj,i have the same type, they involve subterms raiseFi0 and raiseFj0
of incomparable types, at the same positions. In our proof of coherence, we are forced to
compare terms of incomparable types. We explain how we do this in Section 6.1 below.

6.1 Coherence proof
The basic idea behind the proof of Theorem 12 is to compare CBPVE terms Γ ⊢g Mi : Ci,
where ⌊C1⌋ = ⌊C2⌋ using a logical relation. The definition of the logical relation is based on
⊤⊤-lifting [22]: we compare the terms M1 and M2 by looking at what happens in related
continuations, which, in our case, are also CBPVE computations. Since we wish to prove a
result (M1 ≡M2) about open terms, we employ logical relations of varying arity [10], which
are indexed by typing contexts Γ. Varying-arity ⊤⊤-lifting has previously been applied to
calculi with sum types by Katsumata [13].

The logical relation consists of a relation RJD1, D2KΓ between CBPVE computations
Γ ⊢g Mi : Di, for each CBPVE typing context Γ and pair of CBPVE computation types
with ⌊D1⌋ = ⌊D2⌋. These are defined mutually inductively on ⌊Di⌋, together with analogous
relations RJB1, B2KΓ between CBPVE values.

We write Γ′ ▷ Γ to mean that Γ is a sublist of Γ′, so that every computation Γ ⊢g M : C

has a weakening Γ′ ⊢g M : C, and similarly for values. All of the relations we define
are closed under weakening, so for instance, if Γ′ ▷ Γ and (M1, M2) ∈ RJD1, D2KΓ, then
(M1, M2) ∈ RJD1, D2KΓ′ . If Γ ⊢g Mi : Fdi

Ai and Γ, x : Ai ⊢g Ki : Di, then we write
(M1, M2)⊥(K1, K2) when

∀D :> ⟨⟨d1⟩⟩D1, ⟨⟨d2⟩⟩D2. coerceD (M1 to x. K1) ≡ coerceD (M2 to x. K2)

The definition of the logical relation is given in Figure 4. The logical relation also involves
relations RJA1, A2K

⊤
Γ between continuations, which in our case are computations Γ, x : Ai ⊢g

Ki : Di.
The crucial fact about our logical relation is that, if we restrict to computations Mi that

happen to have the same type, it exactly matches ≡:

D. McDermott 25:15

(M1, M2) ∈ RJD1, D2KΓ if:
∀Γ′ ▷ Γ, (K1, K2) ∈ RJA1, A2K

⊤
Γ′ . (M1, M2)⊥(K1, K2) for Di = FdiAi

∀j ∈ J. (j‘M1, j‘M2) ∈ R
q
C1,j , C2,j

y
Γ} for Di =

∏
j∈J Ci,j

∀Γ′ ▷ Γ, (V1, V2) ∈ RJA1, A2KΓ′ . (V1‘M1, V2‘M2) ∈ RJC1, C2KΓ′ for Di = Ai → Ci

(K1, K2) ∈ RJA1, A2K
⊤
Γ if:

∀Γ′ ▷ Γ, (V1, V2) ∈ RJA1, A2KΓ′ . (return V1, return V2)⊥(K1, K2)

(V1, V2) ∈ RJB1, B2KΓ if:
(force V1, force V2) ∈ RJC1, C2KΓ for Bi = UCi

(always true) for Bi = 1

∀Γ′ ▷ Γ, {Γ′, x1 : Ai,1, x2 : Ai,2 ⊢g Mi : D}i∈{1,2}.

(∀Γ′′ ▷ Γ′, {(W1,j , W2,j)∈RJA1,j , A2,jKΓ′′}j∈{1,2}. M1[xj 7→W1,j] ≡M2[xj 7→W2,j])
⇒ match V1 with (x1, x2) in M1 ≡match V2 with (x1, x2) in M2

for Bi = Ai,1 ×Ai,2

∀Γ′ ▷ Γ, {Γ′, xj : Ai,j ⊢g Mi,j : D}i,j .

(∀j ∈ J, Γ′′ ▷ Γ′, (W1, W2) ∈ RJA1,j , A2,jKΓ′′ . M1[xj 7→W1] ≡M2[xj 7→W2])
⇒ match V1 with {injj xj . M1,j}j∈J ≡match V2 with {injj xj . M2,j}j∈J

for Bi =
∐

j∈J Ai,j

Figure 4 The logical relation used in the proof of coherence

▶ Lemma 15. Assume that E has left-cancellative upper bounds.
1. If Γ ⊢g Mi : C for i ∈ {1, 2}, then (M1, M2) ∈ RJC, CKΓ iff M1 ≡M2.
2. If Γ ⊢g Vi : A for i ∈ {1, 2}, then (V1, V2) ∈ RJA, AKΓ iff, for all Γ′ ▷ Γ and Γ′, x : A ⊢g

M : C, we have M [x 7→ V1] ≡M [x 7→ V2].

Proof. By mutual induction on C and A. We only give the case for returner types FdA,
which demonstrates where we use our assumption on E. If (M1, M2) ∈ RJFdA, FdAKΓ, then
we certainly have (M1, M2)⊥(return x, return x) in context Γ, x : A. This implies M1 ≡M2.
For the other direction, assume that M1 ≡ M2. If (K1, K2) ∈ RJA, AK⊤

Γ′ with Γ′ ▷ Γ, and
D :> ⟨⟨d⟩⟩Di, then there is some C :> D1, D2 with ⟨⟨d⟩⟩C <: D, by our assumption on E. Since
(Γ′, w : A) ▷ Γ′, we have coerceC (return w to x. K1) ≡ coerceC (return w to x. K2) and
so coerceC K1 ≡ coerceC K2. Since M1 ≡ M2, it follows that coerceD (M1 to x. K1) ≡
coerceD (M2 to x. K2). ◀

▶ Lemma 16 (Fundamental lemma). Assume that E has left-cancellative upper bounds, and
let ∆i = x1 : Bi,1, . . . , xn : Bi,n be two typing contexts such that ⌊∆1⌋ = ⌊∆2⌋. For all
{(W1,j , W2,j) ∈ RJB1,j , B2,jKΓ}j=1,...,n, we have the following.
1. If ∆i ⊢g Mi : Ci are two computations such that ⌊M1⌋ = ⌊M2⌋, then (M1[xj 7→

W1,j]j , M2[xj 7→W2,j]j) ∈ RJC1, C2KΓ.
2. If ∆i ⊢g Vi : Ai are two values such that ⌊V1⌋ = ⌊V2⌋, then (V1[xj 7→ W1,j]j , V2[xj 7→

W2,j]j) ∈ RJA1, A2KΓ.

Proof. By induction on the structure of the terms Mi and Vi. If one of the terms Mi is
a coercion, then we use the fact that the logical relation is closed under coercions in each

FSCD 2025

25:16 Grading call-by-push-value, explicitly and implicitly

component of the pair of computations separately. If neither is a coercion, then they must
involve the same term former. We handle each separately, and most of the cases are similar
to other logical relations proofs. The case for do however, involves our assumption on E. ◀

The above two lemmas together are enough to show the missing step in the proof
of Theorem 12 above, namely that ⌊M1⌋ = ⌊M2⌋ implies M1 ≡ M2. By Lemma 15,
for every variable (x : B) ∈ Γ we have (x, x) ∈ RJB, BKΓ, so that Lemma 16 implies
(M1, M2) ∈ RJC, CKΓ. Thus Lemma 15 implies M1 ≡M2 as required.

7 Related work

Grading CBPV As mentioned in the introduction, we are not the first to add grades to
CBPV. Various authors have used graded calculi based on CBPV for specific purposes. For
instance, Kammar et al. [11] use a Gifford-style effect system to add effect handlers [29]
to CBPV, while Torczon et al. [32] use a general ordered monoid of grades, and also
add coeffects [28]. All of these assign a grade to every computation, and thus have a
typing judgement of the form Γ ⊢ M : C&e. To give a type to thunk M , they then also
annotate thunk types with grades e. We can embed all of this into CBPVE, by defining
LUeC M = U(⟨⟨e⟩⟩C), and mapping Γ ⊢ M : C&e to LΓM ⊢g LM M : ⟨⟨e⟩⟩LC M. But since
[12, 11, 32] require computations in tuples to have uniform grades, CBPVE is strictly more
general. Moreover, unlike in [12, 11, 32], the assignment of grades in CBPVE matches the
fact that we only observe effects at returner types.
Coherence in graded calculi While the coherence problem for subtyping is well-known
e.g. in the context of recursive types [6], and logical relations techniques have been applied
to proofs of coherence [4] in that context, the problem has not been seriously considered in
the context of grading. For instance, [9] give a calculus with implicit coercions, but then only
claim their semantics can interpret typing derivations; they do not claim an interpretation of
terms. The only existing approach to interpreting the terms of an implicit graded calculus is
the refinement approach proposed by Katsumata [14]. In this approach one first interprets
the ungraded syntax (using a strong monad), and then defines the interpretation of the
graded calculus as the lifting of this along a fibration. One has to assume an interpretation
of the ungraded calculus, which seems unnecessarily strong in light of our coherence result.

8 Conclusions

Call-by-push-value is established as a central calculus in the study of computational effects.
The purpose of CBPVE is to play the same role as CBPV, but for graded computational
effects. CBPVE can be seen as a graded calculus that refines CBPV, the syntax being
augmented with explicit effect information. Alternatively, CBPVE can be seen an inference
system that can be overlaid on top of CBPV, as in the implicit approach (Definition 9) – at
least when the appropriate coherence result holds. While coherence does not hold in general,
a mild condition on the ordered monoid of grades suffices (Theorem 12). This paper does
not provide a complete treatment of CBPVE, notable omissions being a discussion of the
operational semantics, and of other notions of model, adjunction models in particular. We
hope to correct these omissions in a subsequent paper, but for now the results of the present
paper should provide a useful foundation for the study of graded computational effects.

D. McDermott 25:17

References
1 Danel Ahman. When programs have to watch paint dry. In FoSSaCS, pages 1–23, 2023.
2 Andrej Bauer and Matija Pretnar. An effect system for algebraic effects and handlers. Logical

methods in computer science, 10, 2014.
3 Nick Benton, Andrew Kennedy, and George Russell. Compiling Standard ML to Java bytecodes.

In Proceedings of the Third ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 129–140. ACM, 1998. URL: http://doi.acm.org/10.1145/289423.289435,
doi:10.1145/289423.289435.

4 Dariusz Biernacki and Piotr Polesiuk. Logical relations for coherence of effect subtyping.
Logical methods in computer science, 14, 2018.

5 Francis Borceux, George Janelidze, and G Max Kelly. Internal object actions. Comment.
Math. Univ. Carolin., 46(2):235–255, 2005.

6 Val Breazu-Tannen, Thierry Coquand, Carl A Gunter, and Andre Scedrov. Inheritance as
implicit coercion. Information and computation, 93(1):172–221, 1991.

7 Marcelo Fiore and Philip Saville. List objects with algebraic structure. In Dale Miller,
editor, 2nd Int. Conference on Formal Structures for Computation and Deduction, FSCD
2017, volume 84 of Leibniz Int. Proc. in Informatics, pages 16:1–16:18. Dagstuhl Publishing,
2017. doi:10.4230/lipics.fscd.2017.16.

8 Soichiro Fujii, Shin-ya Katsumata, and Paul-André Melliès. Towards a formal theory of graded
monads. In Bart Jacobs and Christof Löding, editors, Foundations of Software Science and
Computation Structures, pages 513–530. Springer, 2016.

9 Marco Gaboardi, Shin-ya Katsumata, Dominic Orchard, Flavien Breuvart, and Tarmo Uustalu.
Combining effects and coeffects via grading. In Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, pages 476–489. ACM, 2016. URL:
http://doi.acm.org/10.1145/2951913.2951939, doi:10.1145/2951913.2951939.

10 Achim Jung and Jerzy Tiuryn. A new characterization of lambda definability. In Proceedings
of the International Conference on Typed Lambda Calculi and Applications, pages 245–257.
Springer, 1993. doi:10.1007/BFb0037110.

11 Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. ACM SIGPLAN Notices,
48(9):145–158, 2013.

12 Ohad Kammar and Gordon D. Plotkin. Algebraic foundations for effect-dependent optimisa-
tions. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 349–360. ACM, 2012. URL: http://doi.acm.org/10.1145/
2103656.2103698, doi:10.1145/2103656.2103698.

13 Shin-ya Katsumata. A characterisation of lambda definability with sums via ⊤⊤-closure
operators. In Computer Science Logic: 22nd International Workshop, CSL 2008, 17th Annual
Conference of the EACSL, Bertinoro, Italy, September 16-19, 2008. Proceedings 22, pages
278–292. Springer, 2008.

14 Shin-ya Katsumata. Parametric effect monads and semantics of effect systems. In Proc. of 41st
Ann. ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014, pages 633–645. ACM Press, New York, 2014.
doi:10.1145/2535838.2535846.

15 Shin-ya Katsumata, Dylan McDermott, Tarmo Uustalu, and Nicolas Wu. Flexible presentations
of graded monads. Proceedings of the ACM on Programming Languages, 6(ICFP):902–930,
2022.

16 Ariel E Kellison and Justin Hsu. Numerical fuzz: A type system for rounding error analysis.
Proceedings of the ACM on Programming Languages, 8(PLDI):1954–1978, 2024.

17 Satoshi Kura. Graded algebraic theories. In International Conference on Foundations of
Software Science and Computation Structures, pages 401–421. Springer, 2020.

18 Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Jean-Yves Girard, ed-
itor, Typed Lambda Calculi and Applications, pages 228–243. Springer, 1999. doi:10.1007/
3-540-48959-2_17.

FSCD 2025

http://doi.acm.org/10.1145/289423.289435
https://doi.org/10.1145/289423.289435
https://doi.org/10.4230/lipics.fscd.2017.16
http://doi.acm.org/10.1145/2951913.2951939
https://doi.org/10.1145/2951913.2951939
https://doi.org/10.1007/BFb0037110
http://doi.acm.org/10.1145/2103656.2103698
http://doi.acm.org/10.1145/2103656.2103698
https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/3-540-48959-2_17

25:18 Grading call-by-push-value, explicitly and implicitly

19 Paul Blain Levy. Adjunction models for call-by-push-value with stacks. Electronic Notes in
Theoretical Computer Science, 69:248–271, 2003. CTCS’02, Category Theory and Computer
Science. doi:10.1016/S1571-0661(04)80568-1.

20 Paul Blain Levy. Call-by-push-value: Decomposing call-by-value and call-by-name. Higher-
Order and Symbolic Computation, 19(4):377–414, 2006. doi:10.1007/s10990-006-0480-6.

21 Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in call-by-value
programming languages. Information and computation, 185(2):182–210, 2003.

22 Sam Lindley and Ian Stark. Reducibility and ⊤⊤-lifting for computation types. In Typed
Lambda Calculi and Applications: 7th International Conference, TLCA 2005, Nara, Japan,
April 21-23, 2005., pages 262–277. Springer, 2005.

23 J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proceedings of the 15th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 47–57.
ACM, 1988. URL: http://doi.acm.org/10.1145/73560.73564, doi:10.1145/73560.73564.

24 Dylan McDermott and Tarmo Uustalu. What makes a strong monad? In Proceedings Ninth
Workshop on Mathematically Structured Functional Programming (to appear). Open Publishing
Association, 2022.

25 Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.
doi:10.1016/0890-5401(91)90052-4.

26 Alan Mycroft, Dominic Orchard, and Tomas Petricek. Effect systems revisited—control-
flow algebra and semantics. In Semantics, Logics, and Calculi: Essays Dedicated to Hanne
Riis Nielson and Flemming Nielson on the Occasion of Their 60th Birthdays, pages 1–32.
Springer, 2016. URL: http://dx.doi.org/10.1007/978-3-319-27810-0_1, doi:10.1007/
978-3-319-27810-0_1.

27 Max S New, Daniel R Licata, and Amal Ahmed. Gradual type theory. Proceedings of the
ACM on Programming Languages, 3(POPL):1–31, 2019.

28 Tomas Petricek, Dominic Orchard, and Alan Mycroft. Coeffects: A calculus of context-
dependent computation. In Proceedings of the 19th ACM SIGPLAN International Conference
on Functional Programming, pages 123–135. ACM, 2014. URL: http://doi.acm.org/10.
1145/2628136.2628160, doi:10.1145/2628136.2628160.

29 Gordon Plotkin and Matija Pretnar. Handlers of algebraic effects. In European Symposium on
Programming, pages 80–94. Springer, 2009.

30 A.L. Smirnov. Graded monads and rings of polynomials. J. Math. Sci., 151(3):3032–3051,
2008. doi:10.1007/s10958-008-9013-7.

31 Andrew Tolmach. Optimizing ML using a hierarchy of monadic types. In Xavier Leroy and
Atsushi Ohori, editors, Types in Compilation, pages 97–115. Springer, 1998.

32 Cassia Torczon, Emmanuel Suárez Acevedo, Shubh Agrawal, Joey Velez-Ginorio, and Stephanie
Weirich. Effects and coeffects in call-by-push-value. Proceedings of the ACM on Programming
Languages, 8(OOPSLA2):1108–1134, 2024.

A The CBPVE equational theory

The axioms genering the CBPVE equational theory ≡ are listed in Figure 5. Each axiom
is subject to the evident typing constraints, for instance, V ≡ () requires V to have type 1.
In addition to the axioms, we generate ≡ by the obvious congruence rules, plus reflexivity,
symmetry, and transitivity.

https://doi.org/10.1016/S1571-0661(04)80568-1
https://doi.org/10.1007/s10990-006-0480-6
http://doi.acm.org/10.1145/73560.73564
https://doi.org/10.1145/73560.73564
https://doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1007/978-3-319-27810-0_1
https://doi.org/10.1007/978-3-319-27810-0_1
https://doi.org/10.1007/978-3-319-27810-0_1
http://doi.acm.org/10.1145/2628136.2628160
http://doi.acm.org/10.1145/2628136.2628160
https://doi.org/10.1145/2628136.2628160
https://doi.org/10.1007/s10958-008-9013-7

D. McDermott 25:19

return V to x. M ≡ M [x 7→ V]
j‘λ{i. Mi}i∈I ≡ Mj

V ‘(λx : A. M) ≡ M [x 7→ V]
force (thunk M) ≡ M

match (V1, V2) with (x1, x2) in M ≡ M [x1 7→ V1, x2 7→ V2]
match injj V with {inji xi. Mi}i∈I ≡ Mj [xj 7→ V]

(a) The β-laws.

V ≡ thunk (force V)
V ≡ ()

M [x 7→ V] ≡ match V with (x1, x2) in M [x 7→ (x1, x2)]
M [x 7→ V] ≡ match V with {inji xi. M [x 7→ inji xi]}i∈I

M ≡ M to x. return x

M ≡ λ{i. i‘M}i

M ≡ λx : A. x‘M

(b) The η-laws. The second law only applies when V has type 1.

(M1 to x. M2) to y. M3 ≡ M1 to x. (M2 to y. M3)
(do x← op V then M) to y. M ′ ≡ do x← op V then (M to y. M ′)

λ{i. M to x. Ni}i∈I ≡ M to x. λ{i. Ni}i∈I

λy : A. M to x. N ≡ M to x. λy : A. N

(c) The sequencing laws.

M ≡ coerceC M

coerceD (coerceC M) ≡ coerceD M

(coerceFeA M) to x. (coerceD N) ≡ coerce⟨⟨e⟩⟩D (M to x. N)
do y ← op V then (coerceD N) ≡ coerce⟨⟨d⟩⟩D (do y ← op V then N)

i‘(coerce∏
i∈I

Di
M) ≡ coerceDi

(i‘M)

V ‘(coerceB→D M) ≡ coerceD (V ‘M)
match V with (x1, x2) in (coerceD M) ≡ coerceD (match V with (x1, x2) in M)

match V with {inji xi. (coerceDMi)}i∈I ≡ coerceD (match V with {inji xi.Mi}i∈I)

(d) The coercion laws. The first two laws are for reflexivity and transitivity; the first only applies when
M has type C.

Figure 5 (Typed) equations between CBPVE values and computations.

FSCD 2025

	1 Introduction
	2 Call-by-push-value (without grades)
	3 Grading call-by-push-value, explicitly
	4 Subsuming call-by-value and call-by-name
	4.1 Fine grain call-by-value
	4.2 Call-by-name

	5 Graded monad semantics
	6 Graded call-by-push-value, implicitly
	6.1 Coherence proof

	7 Related work
	8 Conclusions
	A The CBPVE equational theory

